Деформация стали при какой температуре

Деформация стали при какой температуре thumbnail

См. начало: Температурные воздействия на конструкции – Часть 1: Нормы проектирования

Введение

В этой части рассмотрены теоретические основы температурных воздействий на конструкции с точки зрения классической механики материалов.

В предыдущей части 1 рассмотрены особенности учета температурных воздействий при проектировании конструкций зданий по российскому своду правил СП 20.13330.2011 (СНиП 2.01.07-85).

В части 3 представлены примеры температурных воздействий на простые конструкции – балки с различными условиями закрепления.   

1. Теоретические основы температурных воздействий на материалы

1.1. Температурное расширение-сокращение

Изменения температуры вызывают расширение или сокращение конструкционных материалов, в результате чего в них возникают температурные деформации и температурные напряжения. Простая иллюстрация температурного расширения показана на рисунке 2.1, где брусок материала не закреплен и поэтому имеет возможность свободно расширяться [1]. 

Деформация стали при какой температуре

Рисунок 2.1 – Брусок материала под воздействием увеличения температуры [1]   

Когда этот брусок нагревается, каждый элемент материала подвергается температурным деформациям по всем направлениям, и, соответственно, размеры бруска увеличиваются также во всех направлениях. Если взять угол А за точку отсчета и дать стороне АВ возможность сохранять свое исходное направление, то брусок примет форму, которая показана штриховыми линиями.  

Для большинства конструкционных материалов температурная деформация εTявляется пропорциональной изменению температуры ΔT, то есть

εT = α·ΔT,   (1)

где α– свойство материала, которое называется коэффициентом температурного расширения. Согласно принятому в мире «знаковому соглашению» температурное расширение считается положительным, а температурное сокращение – отрицательным [1, 2].

1.2. Коэффициент температурного расширения конструкционных материалов

Поскольку деформация является безразмерной величиной, этот коэффициент температурного расширения имеет размерность, обратную изменению температуры. В системе СИ размерность αТможет выражаться как 1/К (величина обратная единице СИ Кельвин) или 1/ºС (величина обратная градусу Цельсия). ВеличинаαТявляется одинаковойв обоих случаях, так как изменение температуры является численно одинаковым как в градусах Кельвина, так и в градусах Цельсия.

Удобно представлять величину коэффициента температурного расширения в единицах 10-6/ºС или мкм/м·ºС. Последний вид особенно удобен – он наглядно показывает насколько микрометров удлиняется один метр материала при увеличении температуры на один градус температуры.  

Информация о коэффициентах температурного расширения некоторых конструкционных материалов представлена в таблице 1.  

 Таблица 2.1 – Коэффициент температурного расширения конструкционных материалов [1]

Деформация стали при какой температуре

1.3. Коэффициент температурного расширения алюминиевых сплавов

Коэффициенты температурного расширения основных алюминиевых сплавов, которые применяются в строительстве, показаны в таблице 2.  

Таблица 2.2 – Коэффициент температурного расширения строительных алюминиевых сплавов [3]

Деформация стали при какой температуре

Из таблицы 2.2 видно, что коэффициенты температурного расширения различных алюминиевых сплавов различаются незначительно. Поэтому в своде правил          СП 128.13330.2012 (СНИП 2.03.06-85) для расчетов алюминиевых конструкций в интервале температуры от минус 70 ºС до 100 ºС для всех применяемых в строительстве алюминиевых сплавов применяется коэффициент температурного расширения 0,23·10-4 1/ºС [4]. В европейском стандарте EN 1991-1-5 величина расчетного коэффициента температурного расширения составляет 24·10-6 1/ºС [5].

1.4. Температурные напряжения

Чтобы продемонстрировать относительную важность температурных напряжений, можно сравнить температурные напряжения с напряжениями, которые возникают при силовом нагружении [1]. Предположим, что мы имеем брус, который нагружен силами в осевом направлении с продольными деформациями, которые даются равенством   

ε = σ/Е,   (2)

где σ– напряжение, аЕ– модуль упругости. Далее предположим, что мы имеем идентичный брусок, которые подвержен изменению температуры ΔT.Это означает, что этот брусок имеет температурные деформации согласно равенства (1). Приравнивание этих двух видов деформаций дает уравнение

σ = Е·α·ΔT   (3)

Пример.

Вычислим осевое напряжение σ,которое дает такие же деформации, как и изменение температурыΔTв стержнях из алюминиевого сплава и строительной (малоуглеродистой) стали при увеличении их температуры на 50 ºС. 

Для алюминиевого стержня (α = 23·106, Е = 70000 Н/мм2):

σ = 70000·23·10-6·50 = 80,5 Н/мм2

Для стержня из малоуглеродистой стали (α = 12·106, Е = 210000 Н/мм2):

σ = 210000·12·10-6·50 = 126 Н/мм2

Отметим известный факт, что при одинаковом изменении температуры температурные напряжения в алюминиевом стержне составляют только 2/3 от величины температурных напряжений в стальном стержне. Так происходит потому,  что величина температурных напряжений зависит от произведения модуля упругости и коэффициента температурного расширения (см. формулу (3)). Поэтому, хотя коэффициент температурного расширения алюминия в два раза больше, чем у стали, но модуль упругости алюминия в три раза меньше, чем у стали. 

Как видно из приведенных выше расчетов, температурные напряжения могут достигать величин, сравнимых с напряжениями от механических нагрузок. Поэтому термические воздействия на конструкции зданий необходимо учитывать наряду с другими нагрузками, как того и требуют нормативные документы [4, 5].  

1.5. Температурные перемещения

Вернемся к бруску материала, показанного на рисунке 1 [1]. Предполагаем, что материал бруска является гомогенным и изотропным, то есть механические свойства материала бруска являются одинаковыми во всем его объеме. Кроме того, предполагаем, что изменение температурыΔT является однородным, то есть одинаковым, по всему бруску. При таких условиях мы можем вычислить увеличение любого размера бруска путем умножения первоначального размера на температурную деформацию.  Например, если один из размеров бруска составляет L, то этот размер увеличиться на величину

δТ = εT·L= α·ΔT·L  (4)

Уравнение (4) можно применять для вычисления изменений длин элементов конструкций после однородного нагрева, например, удлинение призматического стержня на рисунке 2.2. Поперечные размеры стержня также изменятся, но эти изменения не показаны на рисунке 2.2, так как обычно они не оказывают влияния на осевые силы, которые передаются этим стержнем.

Читайте также:  При какой температуре сохнет шпаклевка для авто

Деформация стали при какой температуре 

Рисунок  2.2 – Увеличение длины призматического стрежня
в результате однородного увеличения температуры (уравнение (4)) [1]

Пример.

Оценим удлинение незакрепленных алюминиевого и стального стержней длиной 3 м при увеличении их температуры на 50 ºС.

Для алюминиевого стержня:

δТ = α·ΔT·L = 23·10-6·50·3000 = 3,5 мм

Для стержня из малоуглеродистой стали:

δТ = α·ΔT·L = 12·10-6·50·3000 = 1,8 мм

При рассмотрении выше температурных деформаций предполагалось, что конструкция не имеет ограничений для своих перемещений, что позволяло ей расширяться или сокращаться совершенно свободно. Такие условия возникают, например, когда объект лежит на гладкой поверхности, на которой не возникает трения [1]. В таких случаях при однородном нагреве всего объекта в целом не возникает напряжений, хотя неоднородные изменения температуры могут вызывать внутренние температурные напряжения. Однако многие конструкции имеют опоры, которые препятствуют свободному расширению и сокращению их размеров. Поэтому в них развиваются температурные напряжения даже, если изменение температуры является однородным по всей конструкции.

1.6. Температурные деформации в статически определимых конструкциях

Рассмотрим ферму АВС из двух стержней, показанную на рисунке 2.3. Предположим, что температура стержня АВ изменилась на ΔТ1, а стержня ВС – на ΔТ2. Поскольку эта ферма является статически определимой, то оба стержня могут свободно удлиняться или укорачиваться, давая в результате перемещение соединения В. Однако в этом случае температурные напряжения в стержнях, а также реакции в опорах, отсутствуют.

Деформация стали при какой температуре

Рисунок  2.3 – Статически определимая ферма
с однородным изменением температуры в каждом элементе

Это заключение справедливо в целом для всех статически определимых конструкций, а именно: однородное изменение температуры в элементах конструкции вызывают температурные деформации (и соответствующие изменения длин элементов) без возникновения соответствующих температурных напряжений [1, 2].      

1.7. Температурные деформации в статически неопределимых конструкциях

Статически неопределимыми конструкциями называются конструкции, у которых число реакций превышает число уравнений статического равновесия. В отличие от статически определимых конструкций при расчете таких конструкций принимаются во внимание прогибы [1, 2].

В статически неопределимой конструкции температурные напряжения могут возникать или не возникать в зависимости от особенностей конструкции и особенностей температурных изменений. Чтобы проиллюстрировать некоторые из таких возможностей, рассмотрим статически неопределимую ферму, показанную на рисунке 2.4.  

Деформация стали при какой температуре

Рисунок  2.4 – Статически неопределимая ферма
под воздействием изменений температуры

Опоры этой конструкции позволяют узлу D двигаться горизонтально. Поэтому, когда вся ферма однородно нагревается, в ней не возникает температурных напряжений. Все элементы увеличиваются в длине пропорционально своим первоначальным длинам, а вся ферма в целом становится немного больше в размерах. 

Однако, если некоторые из стержней нагреваются, а другие – нет, то возникают температурные напряжения, так как статически неопределимое расположение стержней препятствует их свободному расширению.    

Заключение

1) Изменение температуры элементов конструкции вызывает в них температурные деформации. Температурные напряжения возникают только в статически неопределимых конструкциях. 

2) Однородный нагрев алюминиевого стержня на 50 ºС способен при жестком закреплении концов стержня вызывать значительные температурные напряжения. При таком нагреве удлинение стержня со свободными концами составляет 3,5 мм.

См. окончание:
Температурные воздействия на конструкции – Часть 3: Теория и примеры

Источники:

1. James M. Gere & Barry J. Goodno – Mechanics of Materials, 2009

2. Тимошенко С.П., Гере Дж. – Механика материалов, М.: Мир, 1976

3. Aluminum and Aluminum Alloys / ed. J.R. Davis, ASM International, 1993

4. СП 128.13330.2012 (СНИП 2.03.06-85) Алюминиевые конструкции

5. EN 1991-1-5  Еврокод 1: Воздействия на сооружения. Часть 1-5. Основные воздействия. Температурные воздействия   

Подготовлено сотрудниками Алюком

Источник

Последствия теплового воздействия на пожаре на металлы (сплавы) и конструкции из них можно разделить на 6 основных групп, условно расположив их (исходя из температуры наступления) в следующий ряд:

1) деформации;

2) образование окислов на поверхности металла;

3) структурные изменения, сопровождающиеся изменением физико-химических и механических свойств;

4) растворение металла в металле;

5) расплавление и проплавление;

6) горение металла (сплава).

Результаты протекания этих процессов при осмотре места пожара можно зафиксировать визуально или с помощью инструментальных средств, а полученную таким образом информацию использовать при поисках очага пожара.

Рассмотрим последовательно перечисленные выше процессы и возможности экспертного использования полученных сведений. Основное внимание при этом уделим сталям – наиболее распространенному сплаву.

Деформации

Известно, что критическая температура, при которой металлические конструкции теряют несущую способность, составляет: у стальных конструкций – от 440-500 до 550-6000 С; у конструкций из алюминиевых сплавов – около 2500 С.

Потеря несущей способности у металлоконструкции связана, прежде всего, с тем, что она гнётся, деформируется. Эти деформации при осмотре места пожара можно увидеть и нужно оценить.

Заметные деформации у стальных конструкций происходят, как отмечают специалисты, уже при температуре 3000 С. При нагреве до 550-6000 С деформации становятся значительными по величине и в 15-20 % случаев могут привести к обрушению конструкции.

Оценка величины и направленности деформаций даёт определённую информацию об относительной интенсивности и направленности теплового воздействия в тех или иных зонах.

Отметим визуальные признаки, которые следует фиксировать и оценивать.

Читайте также:  При какой температуре хранить грецкие орехи в скорлупе

а) Направление деформации металлических сплавов.

Металлоконструкции и их отдельные элементы деформируются, как правило, в сторону наибольшего нагрева. Кстати, это свойство не только металлов, но и большинства других материалов, например, стекла.

б) Величина деформации.

Очевидно, что величина деформации и конструкции должна быть пропорциональна температуре и длительности её нагрева. Поэтому, казалось бы, на месте пожара наиболее «горячей» зоной можно смело считать ту, в которой металлоконструкции имеют наибольшую деформацию. Однако не все так просто, и наибольшая деформация происходит не всегда там, где имело место наибольшая температура, наиболее интенсивный и продолжительный нагрев. Она может быть и там, где конструктивный элемент несёт более высокую нагрузку или на него действует наибольший изгибающий момент.

Тем не менее на рассредоточенных по зоне горения однотипных и относительно одинаково нагруженных конструкциях оценить величину деформации в сравнении друг с другом очень полезно.

Чтобы количественно оценить степень деформации рассчитывают так называемую величину относительной деформации.

в) Взаимное расположение деформированных (обрушившихся) конструкций.

При осмотре места пожара нужно обращать внимание на взаимное расположение в пространстве, деформированных либо обрушившихся конструкций. Иногда это даёт полезную для установления очага пожара информацию.

г) «Высота излома» вертикальных несущих конструкций.

Не менее полезно при осмотре ряда однотипных вертикальных несущих металлоконструкций сравнивать минимальную высоту, на которой начинается существенная деформация каждой из конструкций. Замечено, что при нагреве в ходе пожара вертикальные несущие металлоконструкции (например, металлические стойки павильонов, ангаров и других подобных сооружений) как бы подламываются на определенной высоте. Чем ближе очаг пожара к конструкции, тем на меньшей высоте на прогревается до критической температуры восходящими конвективными потоками. Таким образом, зафиксировав высоту излома вертикальных конструкций, мы имеем возможность проявить своеобразный «макроконус» – признак направленности распространения горения от очага к периферии.

д) Значительные по величине локальные деформации.

Значительные по величине и чётко выраженные локальные деформации металлоконструкций, особенно балок перекрытия и тому подобных элементов – важный очаговый признак, на который обязательно следует обращать внимание. Данные деформации образуются в начальной стадии пожара, когда в объёме помещения, справа и слева от локально нагреваемого участка ещё холодно, а под данным участком собственно и происходит горение. В противном случае, если деформация балки происходила на стадии развившегося пожара, при относительно равномерной температуре на уровне потолка во всем помещении, то она должна была деформироваться относительно равномерно, с максимальным прогибом по центру, где на балку действует максимальный изгибающий момент.

Образование окислов на поверхности металла

Алюминий и его сплавы.

Известно, что на поверхности алюминия и его сплавов уже при обычных температурах существует микронной толщины окислый слой, который предохраняет алюминий от окисления. Окисел этот выполняет свою функцию и при нагреве алюминиевого изделия на пожаре, вплоть до достижения температуры плавления. Какой либо полезной экспертной информацией из исследования окисного слоя на алюминии извлечь не удается.

Медь.

На поверхности медных изделий до температуры примерно 1000 С присутствует черная пленка окисла (CuO, окись меди). При нагреве выше 1000 С и достаточной длительности образуется пленка закиси меди красного цвета (Cu2О). Это обстоятельство даёт возможность в отдельных ситуациях оценивать, превышала ли температура в зоне, где находится медное изделие, указанную величину.

Сталь.

Если поверхность стального изделия обработанная, гладкая, то первый признак теплового воздействия, который можно обнаружить визуально, – так называемые «цвета побежалости». Они появляются при нагревании стали до температуры 200-3000 С благодаря образованию на её поверхности микронной толщины пленки окисла. Толщина слоя окисла зависит от температуры нагрева (чем больше температура, тем окисел толще), а за счёт интерференции света с изменением толщины пленки меняется и её свет. Таким образом, получается, что цвет пленки окисла («цвет побежалости») зависит от температуры нагрева стали и может использоваться для её примерного определения при исследовании пожара.

Оценка нагрева металлических конструкций по «цветам побежалости» при поисках очага пожара используется редко. Чаще это делается при установлении причины пожара, связанного с трением, локальным перегревом в технологических установках, двигателях и т.д.

Окалина.

Высокотемпературный окисел – окалина – образуется на сталях обыкновенного качества (за время нагрева, характерное для среднего пожара) при температуре от 7000 С и выше.

Рост толщины окалины происходит по параболическому закону; чем больше температура и длительность нагрева, тем она толще. От температуры образования оскалины зависит и её состав.

Она может состоять из трех слоев различных окислов – вустита (оксида двухвалентного железа, FeO), гематита (оксида трехвалентного железа Fe2O3) и магнетита (оксида двух – трёхвалентного железа, Fe3O4). Чем выше температура, тем больше в окалине вустита и меньше гематита. Вустит имеет черный цвет, а гематит рыжий. Это обстоятельство позволяет по цвету окалины и её толщине примерно, ориентировочно оценивать температуру нагрева металлоконструкций.

Низко температурная окалина (700-7500 С), в которой мало вустита, обычно имеет рыжеватый оттенок и достаточно тонкая. Окалина, образовавшаяся при 900-1000 С и более, – толстая и чёрная. Если окисел на поверхности стальной конструкции рыхлый и рыжий – это, скорее всего, вообще не окалина, а обыкновенная ржавчина.

Цвет окалины и её толщина дают возможность примерной оценки температуры нагрева стальных конструкций на пожаре. При этом, однако, не исключены ошибки, поэтому лучше всё-таки проводить инструментальные исследования окалины и определять таким образом не только температуру, но и длительность нагрева конструкции.

Читайте также:  При какой температуре грунтовать машину

Расплавления и проплавления металла

Расплавления и проплавления (образование сквозных отверстий) металлов и сплавов на пожарах, особенно крупных, встречаются не так уж и редко. Можно считать, что это наиболее высокая степень термических поражений конструкций и отдельных предметов.

В 70-х гг. В. Г. Выскребцов (ВНИИСЭ) предложил даже использовать так называемый «метод температур плавлений» для поисков очага пожара. Метод заключался в фиксации мест, где расплавился тот или иной материал, и определении, таким образом, распределения температурных зон по месту пожара. Известно, например, что температура плавления составляет: меди – 10830 С; стали – 1300-14000 С. Таким образом, если в зоне А расплавился алюминиевый провод, что температура там превышала 6000 С, а в зоне Б, где оплавились медные провода, она была, как минимум, 1080-10900 С.

Конечно, фиксировать на месте пожара зоны, где расплавился тот или иной материал, весьма полезно. Но считать это самостоятельным методом установления очага пожара было бы неразумно; да и температурные зоны устанавливаются таким путём достаточно условно – если расплавился алюминий, то это не значит, что температура была 6000 С – она могла быть и 700 – 900 – 1000…0 С.

Кроме того, нужно иметь ввиду, что так называемые «проплавления» в металле могут возникнуть и при температуре, ниже температуры плавления. Возможно это, как минимум по двум причинам. 1) Локальный нагрев тонкого стального изделия (листа, проволоки и т.д.) приводит к образованию слоя окалины, соизмеримого по толщине с самим изделием. Окалина, не обладает достаточной механической прочностью, затем может выкрошиться, и на изделии после пожара обнаружится «дырка». В качестве примера приведём исследование пожара, произошедшего на складе одного из научно-исследовательских институтов. При осмотре места пожара там было обнаружено несколько стоящих вертикально рулонов сетки Рабица, на боку которых имелись вытянутые по вертикали каверны – проплавления сетки на глубину до нескольких сантиметров. Наличие таких проплавлений показалось дознавателю очень подозрительным – ведь температура плавления стали, как указывалось выше, 1300-14000 С, и обеспечить такую температуру могло лишь применение каких-то таинственных спецсредств поджога. Все оказалось, однако, более прозаично. Когда остатки сетки по периметру прожогов исследовали, то оказалось, что проволочки полностью состоят из оксидов железа (неокисленного железа там уже нет), т.е. сталь полностью превратилась в окалину. Для такого процесса не нужна температура 1300-1400, достаточно и 800-9000 С. Однако почему разрушения имеют такой специфический, локальный характер? Оказалось, что над рулонами сетки, на деревянных антрисолях склада хранилось несколько тонн полиэтиленовой пленки. При пожаре полимер плавился, горел, а часть его стекала на расположенные ниже рулоны сетки. Прилипающий к сетке и горящий полимер и привёл в кончном счёте к образованию столь странных «проплавлений». 2) Растворение металла в металле. Расплавленный в ходе пожара более легкоплавкий металл при попадании на металл более тугоплавкий может привести к «растворению» последнего в расплаве первого металла. При чём происходит это при температуре, значительно ниже температуры плавления «тугоплавкого металла».

Про достоинства металлочерепицы написано уже немало статей, наша будет более интересная так как мы расскажем не только про достоинства, а и укажем некоторые особенности данного кровельного материала.

Такой процесс возможен, например, при попадании расплавленного алюминия на медь и её сплавы. Происходит это за счёт образования эвтектического сплава меди с алюминием. Известно, что чистая медь имеет температуру плавления 10830 С. В тоже время эвтектический сплав «медь+алюминий» плавится при температуре 6600 С, а «медь+расплавленная латунь» при 870-9800 С.

Способностью растворяться в расплавленном алюминии обладает также сталь.

Растворение стали в алюминии происходит в три этапа: а) окалинообразование на стали, протекающее под воздействием попавшего на неё расплавленного алюминия; б) химическое взаимодействие образовавшихся оксидов железа с расплавленном алюминием по реакции: Fe2O3+2AL -> AL2O+2Fe+847,8 кДж. Реакция эта, как видно из уравнения, сопровождается сильным тепловыделением, что приводит к дополнительному разогреву в зоне реакции и соответственно интенсификации последней; в) растворение восстановленного из окисла железа в расплавленном алюминии (например, при температуре 9000 С в алюминии может раствориться до 10% Fe).

Конечным результатом протекания указанных реакций может быть проплавление (дырка) в тонком стальном листе, в стенке стальной трубы и т.д. Квалификационным признаком, позволяющим отличить такую дырку от проплавления, возникшего, например, под действием электрической дуги, является характерный контур проплавления (в форме лужицы, потека) и тоненькая каемка алюминия обычно сохраняющаяся по периметру дырки.

Горение металлов и сплавов

Известна способность к горению щёлочных и щёлочноземельных металлов (К, Na, Mg). Менее известно, однако, что в определённых условиях способны гореть (т. е. взаимодействовать с кислородом воздуха) металлы и сплавы, обычно не считающиеся горючими. Примером в данном случае могут быть широко распространенные в качестве конструкционных материалов алюмомагниевые сплавы.

Cтруктурные изменения, сопровождающиеся изменением физико-химических свойств

Изменения структуры металла при нагревании происходят в довольно широком интервале температур, но, как правило, незаметно для глаза. Их надо выявлять инструментальными методами, с помощью соответствующих приборов. В частности, широко используются такие методы как: металлография, магнитные исследования.

Источник