Горение с какой температуре

08 ноября 2020
Прочитать позже
Отправим материал на почту
Заказывайте работы по монтажу печей и отопления любой сложности у профессионалов
Оставить заявку
Несмотря на то, что огонь уже с древних времён является помощником человека, он сохраняет множество тайн. Например, температура горения дров колеблется от 235 до 1050 градусов по Цельсию. Чтобы понять, почему разница в цифрах так велика, необходимо узнать, как происходит весь процесс, от растопки до затухания. И понять, какие факторы влияют на силу огня.

Характеристики и свойства пламени
Пламя является раскалённой газообразной средой и распространяется снизу-вверх. Это происходит потому, что тёплый воздух становится менее плотным. Нагреваясь, он устремляется вверх и увлекает за собой огонь. Поэтому растопку костра (печи) начинают снизу. Потому что подожжённая на самой вершине лучина не будет распространять огонь вниз, и он затухнет.
Совсем по-другому ведёт себя пламя в невесомости. Ввиду отсутствия гравитации оно распространяется сразу во все стороны и потому имеет форму шара. Причём он светится ярким голубым цветом, но только до тех пор, пока рядом есть кислород. Как только последний выгорает, огонь переходит в «холодную» стадию, незаметную для глаза. Причём длится она несколько минут. А если к невидимому очагу подвести кислород, то яркое горение возобновляется.
На земле высота пламени будет зависеть от того, насколько высока температура пламени костра из дров. Это напрямую связано с интенсивностью горения. А фазы растягиваются: от медленного тления до взрыва. Но чем больше сила огня, тем быстрее прогорает костёр.

Пламя умеет изменять свой цвет, и на это также влияет мощность. В процессе горения костёр проходит от красных спектров до фиолетовых и обратно. Но также палитра зависит от примесей в горючем. Если в горящий очаг бросить обычную поваренную соль, то пламя окрасится жёлтым. В этом виноват натрий. А борная кислота вызывает бирюзовый оттенок.
Поэтому, когда дрова горят ярким оранжевым цветом, то это значит, что в них много натриевых солей. А синий цвет у костра получается при неполном сгорании топлива. При этом выделяется угарный газ. Вот он и даёт подобный спектр.
Но бывает так, что пламя почти нельзя разглядеть. Бесцветность огня происходит при полном сгорании горючего. Когда оно выделяет только водяные пары и углекислоту. А эти вещества невидимы даже при нагревании.
Любое горение сопровождается дымом, поскольку образуется мелкодисперсный аэрозоль. Его частицы настолько мелкие, что не успевают оседать на землю и увлекаются нагретыми воздушными массами. А количество выделений зависит от кислорода. При его очень большой концентрации костёр горит, практически, бездымно. А если он еле тлеет, распространяя клубы смога, то это говорит о его нехватке.

Цвет у выделений напрямую связан с содержанием в топливе воды. Если в растопку положить мокрые дрова или свежескошенную траву, то из трубы повалит густой и белый дым. Но когда он окрашивается в чёрный спектр, то это говорит о большом количестве сажи в составе горючего. Ярким примером выступает плотный чёрный смог при полыхании автомобильной покрышки.
Процесс горения древесины
Для того, чтобы узнать при какой температуре горит дерево, нужно подробно рассмотреть весь процесс. От закладки дров в очаг до полного затухания огня в печи. А вся операция проходит поэтапно.
Разогрев
Чтобы участок древесины воспламенился, его необходимо нагреть. При температуре от 120 до 150 градусов по Цельсию начинается обугливание поверхности. При этом появляется вещество уже способное к воспламенению. Его называют углём.
Повышение нагрева до 250-350 °C способствует образованию пиролиза. Это газообразные составляющие, которые возникают при термическом распаде. При этом верхние слои угля в древесине уже начинают тлеть. Процесс происходит без огня, но с выделением дыма.

Возгорание пиролиза
Усиление термического распада, которое происходит при дальнейшем нагреве, приводит к тому, что выделенный газ начинает загораться. При этом очаг охватывает все большую площадь в виде цепной реакции. Появляется устойчивое пламя, окрашенное в яркий жёлто-оранжевый цвет.
Воспламенение
А вот древесина загорается, когда нагревание поверхности достигает температуры в 450-620 °C. Более точные цифры будут зависеть от сорта дерева. Но в целом влияние на термохимическую реакцию (воспламенение) оказывает куда большее количество факторов.
Достижение необходимой температуры зависит от:
- формы и объёмного веса куска древесины;
- количества влаги в нем;
- того, как полено расположено в воздушном потоке;
- силы тяги последнего;
- плотности материала горючего.
Ольху, имеющую пористую структуру, разжечь намного проще, чем крепкий дуб. А круглое полено воспламеняется хуже, чем дрова, имеющие грани. Это же касается и массивности материала. Большие чурки очень трудно разжечь. Также плохо загорается струганная текстура. А медлительность процесса при влажных дровах объясняется тем, что много энергии тратится на выпаривание воды.

Горение
При условии, когда присутствует достаточный приток кислорода и тепловой энергии хватает, чтобы прогреть соседние участки, процесс переходит в устойчивую фазу. В ней уже задействован весь объем топлива, а огню помогает горение угля (тление) и взрывы пиролизных выделений.
Другие газы вычленяются медленнее и в процессе горения, практически, не участвуют. Охлаждаясь, они конденсируются и становятся заметными (белый цвет). А при тлении угля воздух все больше проникает в середину древесины и охват горения увеличивается.
Затухание
Процесс может продолжаться бесконечно при соблюдении всех условий:
- В наличии есть ещё несгоревшее топливо.
- Кислород поступает в достаточном количестве.
- Уровень температуры огня не понижается критически.
Как только хоть одно из условий нарушается, то происходит затухание костра.
Измерение температуры горения
Проверить, до которого градуса разгорелся костёр, можно только специальной аппаратурой. Обычные термометры тут не подойдут. Точнее всего температура в печи может быть замерена с помощью пирометра. Но умельцы наловчились использовать даже мультиметр.
В этом видео показано, как узнать, какая температура в костре из дров, применяя мультиметр:
А в стародавние времена в народе определяли нужную температуру в костре по цвету пламени. Если присутствовали красные оттенки, то градусы ещё низкие. Белый спектр указывал на самую высокую температуру, которая создавалась искусственной тягой. Но при этом буквально вся тепловая энергия за очень короткое время вылетала в дымоход. А о том, что пора ставить на печь казан, говорил жёлтый цвет огня.
Современными исследованиями было установлено, что максимальная температура твёрдого топлива напрямую зависит от плотности материала. Этот показатель назвали жаропроизводительностью и стали измерят в процентном содержании каждой породы древесины.
Следующий список покажет, как максимальная температура зависит от жаропроизводительности:
- Тополь: 39 % – 468 °C.
- Ольха: 46 % – 552 °C.
- Осина: 51 % – 612 °C.
- Сосна: 52 % – 624 °C.
- Липа: 55 % – 660 °C.
- Акация: 59 % – 708 °C.
- Пихта: 63 % – 756 °C.
- Берёза: 68 % – 816 °C.
- Летний дуб: 70 % – 840 °C.
- Лиственница: 72 % – 865 °C.
- Зимний дуб: 75 % – 900 °C.
- Граб: 85 % – 1020 °C.
- Ясень и бук: 87 % – 1044 °C.

Чем больше пор внутри древесины, тем ярче и выше у неё пламя. Но при этом она сгорает быстро и даёт не так много тепла, как топливо с высокой плотностью. А у последнего материала из-за этого повышена жаропроизводительность, хоть пламя остаётся небольшим.
Повара, часто готовящие на открытом огне мясо, наловчились проверять готовность костра без приборов. Температура горения древесного угля в мангале может быть проверена вручную. Но это только приблизительные цифры. Для этого нужно провести рукой над поверхностью углей на расстоянии от них в 10 см.
Количество секунд, которые ладонь сможет выдержать, скажут о примерной температуре:
- 5 – значит в мангале меньше 150 °C;
- 4 – говорят о 200 °C;
- 3 – покажут, что очаг разогрелся до 260 °C;
- 2 – поведают, что там около 290 °C;
- 1 – значит мангал готов к приёму мяса и там больше 350 °C.

От чего может зависеть температура
Но плотность (порода) древесины не единственный момент, который определяет с какими градусами будут гореть дрова. Рассмотрим два основных фактора, которые значительно влияют на повышение теплоотдачи.
Влажность
У свежеспиленного дерева показатель влажности находится в среднем на отметке в 55%. Если такой ствол тут же разрубить на дрова и сразу закинуть их в печку, то большая часть выделенной тепловой энергии будет уходить на испарение влаги. Поэтому теплоотдача такого топлива значительно занижена и температура горения дерева в печи слишком поздно достигнет максимальных показателей.
Если другого горючего нет в наличии, то для обогрева помещения в зимний период придётся затратить вдвое больше таких дров. Но перерасход свежесрубленного топлива не единственный убыток в хозяйстве. Использование сырого материала повышает выделение сажи при сжигании. А значит чаще придётся обслуживать дымоход, причём возможно на морозе. Иначе производство тепла в печи упадёт до минимума.

Чтобы не впадать в финансовые затраты, экстренно покупая сухие дрова, заготовкой топлива необходимо заниматься заблаговременно. При этом нужно помнить, что расколотые поленья должны пролежать под навесом не меньше одного года. Только в этом случае их влажность опустится до 20%.
Следующая таблица позволит сравнить показатели теплоты сгорания у дров с влажностью 50% и древесины, пролежавшей год в штабеле под крышей.
Древесина | Сосна | Берёза | Ель | Осина | Ольха | Ясень |
Сырая | 1900 | 2371 | 1667 | 1835 | 1972 | 2550 |
Сухая | 2166 | 2716 | 1902 | 2117 | 2244 | 2907 |
Подача воздуха
Снизить теплоотдачу дров можно, если ограничить поступление кислорода в очаг. Само собой, и температура горения берёзовых дров в печи заметно понизиться. Это произойдёт, если задвинуть заслонку, отвечающую за тягу. При этом время сгорания древесины увеличивается и происходит экономия топлива.

Так привыкли делать многие владельцы домов на печном отоплении. Но уменьшение теплоотдачи сказывается на тепле в помещении. Тогда заслонка открывается до отказа, чтобы экстренно повысить температуру сгорания топлива. И переизбыток воздуха является следствием, что буквально все тепло уходит в дымоход.
Поэтому при растопке печи опытным путём находится то положение заслонки, при котором кислород поступает в топку в должном количестве, чтобы обеспечить оптимальное горение топлива. Но проблема нехватки воздуха или его избыток не единственная. Если в поддувало подаётся слишком холодный воздух, это приводит к тому, что он отнимает часть тепла.
Решением может стать обустройство специального канала, в котором поступающий в топку кислород будет подогреваться от стен топливника.
В этом видео наглядно о том, какая температура в мангале на углях и как добиться максимального огня даже не используя силу тяги:
Коротко о главном
Подводя итоги можно понять, чтобы добиться максимальной теплоотдачи от сжигаемых дров, необходимо:
- Подбирать древесину с наибольшей плотностью.
- Подготавливать дрова заранее, занимаясь распиловкой стволов и разрубкой поленьев.
- Понижать влажность в древесине, выдерживая её в штабелях под навесом в течение минимум одного года.
- При сжигании в печи обеспечить к огню приток кислорода в необходимом количестве, стараясь не превышать требуемый порог.
Соблюдение всех заданных условий будет гарантом, что температура сгорания древесины достигнет своего максимального значения, но не пропадёт в дымоходе. При разумном подходе вся теплоотдача останется в жилом помещении и оптимально его обогреет.
Прочитать позже
Отправим материал на почту
Источник
У этого термина существуют и другие значения, см. Пламя (значения).
Пла́мя – раскаленная газообразная среда, образующаяся при горении и электроразрядах, состоящая в значительной степени из частично ионизированных частиц, в которой происходят химические взаимодействия и физико-химические превращения составных частиц среды (в т.ч. горючего, окислителя, примесных частиц, продуктов их взаимодействия). Сопровождается интенсивным излучением (в УФ, ИК, видимой части спектра – «свечением») и выделением тепла.
В русском языке нет четкого смыслового разделения слов пламя и огонь, однако слово огонь традиционно связано с описанием процессов горения, тогда как пламя имеет более общее употребление, в том числе для процессов, не связанных с горением: молнией, электродугой, свечением вакуумных ламп и так далее.
Иногда в научной литературе пламя относят к «холодной/низкотемпературной плазме», поскольку по существу оно представляет собой газ, состоящий из термически ионизированных частиц с небольшой величиной заряда (как правило, не более ±2-3), тогда как высокотемпературной плазмой называют состояние вещества, при котором ядра атомов и их электронные оболочки сосуществуют раздельно.
Среда пламени содержит заряженные частицы (ионы, радикалы), что обусловливает наличие электропроводности пламени и его взаимодействие с электромагнитными полями. На этом принципе построены приборы, способные с помощью электромагнитного излучения приглушить пламя, оторвать от горючих материалов или изменить его форму[1].
эффект, возникающий при смешивании воды с кипящим парафином
Цвет пламени[править | править код]
различный вид горелки Бунзена зависит от притока кислорода:
1. богатая топливная смесь без предварительного смешивания с кислородом (подача кислорода закрыта) горит жёлтым коптящим рассеянным пламенем
2. подача воздуха снизу почти перекрыта
3. открыта в средней мере: смесь близка к стехиометрической
4. подача воздуха максимальная: бедная смесь
Цвет пламени определяется излучением электронных переходов (например, тепловым излучением) различных возбужденных (как заряженных, так и незаряженных) частиц, образующихся в результате химической реакции между молекулами горючего и кислородом воздуха, а также в результате термической диссоциации. В частности, при горении углеродного горючего в воздухе, синяя часть цвета пламени обусловлена излучением частиц CN±n, красно-оранжевая – излучением частиц С2±n и микрочастиц сажи. Излучение прочих образующихся в процессе горения частиц (CHx±n, H2O±n, HO±n, CO2±n, CO±n) и основных газов (N2, O2, Ar) лежит в невидимой для человеческого глаза УФ и ИК части спектра. Кроме того, на окраску пламени сильно влияет присутствие в самом топливе, деталях конструкции горелок, сопел и так далее соединений различных металлов, в первую очередь натрия. В видимой части спектра излучение натрия крайне интенсивно и ответственно за оранжево-желтый цвет пламени, при этом излучение чуть менее распространенного калия оказывается на его фоне практически не различимым (поскольку большинство организмов имеют в составе клеток K+/Na+ каналы, то в углеродном горючем растительного или животного происхождения на 3 атома натрия приходится в среднем 2 атома калия).
Температура пламени[править | править код]
- Температура воспламенения для большинства твёрдых материалов – 300 °С.
- Температура пламени в горящей сигарете – 250-300 °С.[источник не указан 1149 дней]
- Температура пламени спички 750-1400 °С; при этом 300 °С – температура воспламенения дерева, а температура горения дерева равняется примерно 500-800 °С.
- Температура горения пропан-бутана – 800-1970 °С.
- Температура пламени керосина – 800 °С, в среде чистого кислорода – 2000 °С.
- Температура горения бензина – 1300-1400 °С.
- Температура пламени спирта не превышает 900 °С.
- Температура горения магния – 2200 °С; значительная часть излучения в УФ-диапазоне.
Наиболее высокие известные температуры горения: дицианоацетилен C4N2 5’260 К (4’990 °C) в кислороде и до 6’000 К (5’730 °C) в озоне[2]; дициан (CN)2 4’525 °C в кислороде[3].
Так как вода обладает очень большой теплоёмкостью, отсутствие водорода в горючем исключает потери тепла на образование воды и позволяет развить бо́льшую температуру.
Классификация[править | править код]
Пламя классифицируют по:
- агрегатному состоянию горючих веществ: пламя газообразных, жидких, твёрдых и аэродисперсных реагентов;
- излучению: светящиеся, окрашенные, бесцветные;
- состоянию среды горючее-окислитель: диффузионные, предварительно перемешанных сред (см. ниже);
- характеру перемещения реакционной среды: ламинарные, турбулентные, пульсирующие;
- температуре: холодные, низкотемпературные, высокотемпературные;
- скорости распространения: медленные, быстрые;
- высоте: короткие, длинные;
- визуальному восприятию: коптящие, прозрачные, цветные.
Внутри конуса ламинарного диффузионного пламени можно выделить 3 зоны (оболочки):
- тёмная зона (300-350 °C), где горение не происходит из-за недостатка окислителя;
- светящаяся зона, где происходит термическое разложение горючего и частичное его сгорание (500-800 °C);
- едва светящаяся зона, которая характеризуется окончательным сгоранием продуктов разложения горючего и максимальной температурой (900-1500 °C).
Температура пламени зависит от природы горючего вещества и интенсивности подвода окислителя.
Распространение пламени по предварительно перемешанной среде (невозмущённой), происходит от каждой точки фронта пламени по нормали к поверхности пламени: величина такой нормальной скорости распространения пламени (НСРП) является основной характеристикой горючей среды. Она представляет собой минимально возможную скорость пламени. Значения НСРП отличаются у различных горючих смесей – от 0,03 до 15 м/с.
Распространение пламени по реально существующим газовоздушным смесям всегда осложнено внешними возмущающими воздействиями, обусловленными силами тяжести, конвективными потоками, трением и так далее. Поэтому реальные скорости распространения пламени всегда отличаются от нормальных. В зависимости от характера горения, скорости распространения пламени имеют следующие диапазоны величин: при дефлаграционном горении – до 100 м/с; при взрывном горении – от 300 до 1000 м/с; при детонационном горении – свыше 1000 м/с.
Пламя горящей свечи сопровождало человека тысячи лет.
Окислительное пламя[править | править код]
Расположено в верхней, самой горячей части пламени, где горючие вещества практически полностью превращены в продукты горения. В данной области пламени избыток кислорода и недостаток топлива, поэтому помещённые в эту зону вещества интенсивно окисляются.
Восстановительное пламя[править | править код]
Это часть пламени, наиболее близко расположенная к центру или чуть ниже центра пламени. В этой области пламени много топлива и мало кислорода для горения, поэтому, если внести в эту часть пламени вещество, содержащее кислород, то кислород отнимается у вещества.
Проиллюстрировать это можно на примере реакции восстановления сульфата бария BaSO4. С помощью платиновой петли забирают BaSO4 и нагревают его в восстановительной части пламени спиртовой горелки. При этом сульфат бария восстанавливается и образуется сульфид бария BaS. Поэтому пламя и называют восстановительным.
Цвет пламени зависит от нескольких факторов. Наиболее важны: температура, наличие в пламени микрочастиц и ионов, определяющих эмиссионный спектр.
Применение[править | править код]
Пламя (окислительное и восстановительное) используется в аналитической химии, в частности, при получении окрашенных перлов для быстрой идентификации минералов и горных пород, в том числе в полевых условиях, с помощью паяльной трубки.
Пламя в условиях невесомости[править | править код]
В условиях, когда ускорение свободного падения компенсируется центробежной силой, например, при полёте по орбите земли, горение вещества выглядит несколько иначе. Поскольку ускорение свободного падения компенсировано, сила Архимеда практически отсутствует. Таким образом, в условиях невесомости горение веществ происходит у самой поверхности вещества (пламя не вытягивается), а сгорание более полное. Продукты горения постепенно равномерно распространяются в среде. Это весьма опасно для систем вентилирования. Также серьёзную опасность представляют пудры, поэтому в космосе порошкообразные материалы не применяются нигде, кроме специальных опытов именно с порошками.
В струе воздуха пламя вытягивается и принимает привычный облик. Пламя газовых горелок благодаря давлению газа в условиях невесомости внешне также не отличается от горения в земных условиях.
- Пламя в невесомости
См. также[править | править код]
- Горение, в том числе беспламенное горение.
- Огонь
- Пирохимический анализ – методы обнаружения химических элементов по различному окрашиванию пламени.
Литература[править | править код]
Тидеман Б. Г., Сциборский Д. Б. Химия горения. – Л., 1935.
Примечания[править | править код]
- ↑ Журнал «Популярная механика» Выпуск 106 август 2011. стр. 18
- ↑ Kirshenbaum, A. D.; A. V. Grosse (May 1956). “The Combustion of Carbon Subnitride, NC4N, and a Chemical Method for the Production of Continuous Temperatures in the Range of 5000-6000°K”. Journal of the American Chemical Society. 78 (9): 2020. doi:10.1021/ja01590a075
- ↑ Thomas, N.; Gaydon, A. G.; Brewer, L. (1952). “Cyanogen Flames and the Dissociation Energy of N2”. The Journal of Chemical Physics. 20 (3): 369-374. Bibcode:1952JChPh..20..369T. doi:10.1063/1.1700426.
Источник