К каким из перечисленных экологических факторов относится температура

Окружающая среда оказывает влияние на организмы, обитающие на Земле. Температура, свет, влажность – это экологические факторы среды. Их изменения приводят к смене биологических свойств живых организмов. Меняется география обитания, размножение, питание.
Факторы среды
К экологическим факторам относят условия вокруг, оказывающие воздействие на организмы. Различают абиотические факторы неживой природы и биотические. Биотические факторы – взаимодействие живых организмов, которые влияют на их вид. Также на живые организмы влияют антропогенные факторы – последствия человеческой деятельности.
Живые организмы умеют приспосабливаться к изменениям – это называется адаптацией. Внешний вид организма, отражающий его взаимодействие с окружающей средой, является жизненной формой.
К биотическим экологическим факторам относится температура при условии возникновения особого микроклимата или среды обитания. Физические и химические изменения окружающей среды относятся к абиотическим.
Температура как экологический фактор
Относительное постоянство температуры является основным условием существования живых организмов. Основной источник тепла – солнечное излучение. Физиологические процессы происходят только при определенной температуре.
Воздействие температуры зависит от географического расположения конкретного вида. Климат определяет растения и животных, которые обитают в данной местности. Во Вселенной диапазон температур достаточно большой. Жизнь может существовать только от -200 до + 100 оС. Но большинство видов обитают в гораздо более узком температурном режиме.
Для строения белков требуется температура от 0 до +50 оС. Некоторые организмы могут существовать за этими пределами. Температура как экологический фактор характеризуется сезонными и суточными колебаниями. Изменения температуры, выходящие за диапазон, при котором живые организмы могут существовать, приводит к их массовой гибели. Менее значимое изменение влияет на рост, развитие и поведение многих животных.
Терморегуляции организмов
Свет и температура как экологические факторы влияют на приспосабливаемость живых организмов. Это происходит благодаря биохимическим и физиологическим перестройкам организма и поддержания ими постоянной температуры тела. Различают два вида организмов:
- пойкилотермные;
- гомойотермные.
Пойкилотермные организмы меняют температуру тела в зависимости от окружающей среды. К ним относятся растения, грибы, рыбы, земноводные, пресмыкающиеся и беспозвоночные. Они впадают в оцепенение при низких или слишком высоких температурах.
Гомойотермные умеют поддерживать относительно постоянную температуру тела при изменении условий окружающей среды. Некоторые теплокровные умеют при снижении температуры впадать в оцепенение, при этом их температура тела тоже становится близкой к нулю. Это наблюдается у некоторых птиц и мелких грызунов. Сезонная спячка характерна для медведей, ежей, сусликов и летучих мышей.
Биохимическая адаптация растений
Температура – важнейший экологический фактор для растений. При изменении окружающей среды растения не могут уйти в другую местность, поэтому они приспосабливаются другим образом.
Большинство растений для адаптации к слишком низким или высоким температурам повышают концентрацию сока, накапливают сахара в клетках, снижают теплоотдачу, повышают уровень антоцианов.
При воздействии высококритичных температур в цитоплазме растений увеличивается количество защитных веществ, концентрация органических кислот, солей и слизи. Благодаря этому снижается риск свертывания цитоплазмы и происходит нейтрализация токсичных веществ.
У растений, приспособленных к снижению температуры, накапливаются углеводы, чаще всего глюкоза, в клетках, уменьшается количество воды. Это способствует снижению точки замерзания.
Физиологическая адаптация растений
Изменения температуры, экологического фактора среды, заставляют живые организмы приспосабливаться следующим образом:
- снижение собственных размеров, увеличение репродуктивных органов;
- формирование укороченных побегов;
- сохранение отмерших листьев на кронах;
- опушение побегов;
- покрытие листьев воском;
- оплетение корнями теплых камней;
- погружение части растения в почву.
Также физиологической защитой от изменения температуры является усиленное испарение воды. Такую форму защиты растения используют в жарких влажных районах. В пустынях и степях короткий цикл развития защищает от воздействия высоких температур. Весь цикл происходит весной, а лето растения переживают в состоянии покоя луковиц или корневищ. Мхи и лишайники при высоких температурах впадают в состояние анабиоза.
Морфологическая адаптация растений к температуре
Температура как экологический фактор заставляет растения приспосабливаться к высоким и низким температурам окружающей среды.
В субтропическом и тропическом поясе растения усиливают отражение солнечных лучей. Этому способствует светлая блестящая окраска. Таким образом растения снижают воздействие высокой температуры. Отдельные особи способны уменьшать поверхность, поглощающую свет, за счет колючек, рассеченных или свернутых листьев. Вертикальные листья снижают перегрев растения. Лист может поворачиваться в течение суток, чтобы избежать прямых солнечных лучей.
В холодном климате для сохранения тепла формируются карликовые формы растений. Деревья могут достигать в высоту 50 см. Кусты принимают стелющуюся форму. Высокогорные и арктические растения имеют форму подушки. Они менее чувствительны к ветру, хорошо укрываются под снегом зимой и максимально используют тепло почвы летом.
Биохимические адаптации животных
Такие экологические факторы, как свет, температура, влажность, оказывают влияние на адаптационные механизмы животных. Разнообразие адаптационных факторов появилось благодаря пойкилотермным и гомойотермным организмам.
У хладнокровных животных для исключения замерзания в крови накапливаются так называемые биологические антифризы. Их формирование позволяет понизить точку замерзания и не погибнуть в критических условиях. У рыб вещества называются гликопротеиды, у насекомых накапливается глицерин или высокая концентрация глюкозы.
Теплокровные животные избегают переохлаждения за счет увеличения обмена веществ. Жировые запасы способствуют появлению дополнительной энергии, которая тратится на обогрев организма. У некоторых млекопитающих, например, у бурого медведя, есть особая жировая ткань – бурый жир. Он богат митохондриями и кровеносными сосудами.
Физиологическая адаптация животных к температуре
На процесс адаптации к новым условиям влияет температура как экологический фактор. Кратко процесс можно описать следующими словами: у хладнокровных животных процессы жизнедеятельности зависят от окружающей среды, у теплокровных регулируются внутри организма.
Теплообмен у хладнокровных животных происходит благодаря особенностям кровеносной системы. Сосуды, мышцы и кожа тесно соприкасаются между собой, кровь кожи нагревается и уходит к мышцам, согревая их. Если температура окружающей среды увеличивается, то ускоряется кровоток.
У всех животных перегрев снимается за счет испарения влаги с поверхности тела. У некоторых испарение интенсивнее происходит через слизистые и верхние дыхательные пути. Такой способ присущ теплокровным животным с шерстью.
При снижении температуры окружающей среды животные, в том числе и человек, ощущают мышечную дрожь. Отдельные виды их впадают в спячку. Если животное обладает редкой и короткой шерстью, то терморегуляция происходит посредством расширения и сужения сосудов кожи.
Морфологическая адаптация животных
Температура как экологический фактор оказывает влияние на животных и морфологическую адаптацию. Замечено, что хладнокровные животные тем крупнее, чем ближе к экватору. Теплокровные же – наоборот. Их размер увеличивается по мере приближения к арктическому полюсу.
Чем больше поверхность тела, тем интенсивнее отдача тепла в окружающее пространство. По этой причине южные животные обладают длинными ушами, длинным хвостом и конечностями. Это особенно видно при рассмотрении близких видов грызунов.
Уменьшению потерь тепла способствуют различные покровы тела: у пресмыкающихся – роговый покров, у птиц – перья, у млекопитающих – мех. Сохранению тепла при понижении экологического фактора – температуры воды – у животных севера, обитающих в воде, способствует подкожный жир. Важную роль играет цвет кожного покрова. Светлая окраска тропических животных позволяет избегать перегревания.
Поведенческие адаптации животных
Поведенческие адаптации зависят от температуры как экологического фактора. У хладнокровных животных выделяют следующие типы поведенческих реакции:
- выбор мест с наилучшей температурой;
- смена позы.
Хладнокровные животные отыскивают места, где достаточно солнечного света. После нагрева тела они перемещаются в тень или прячутся в норах. Температуру тела они поддерживают за счет мышечных сокращений.
Теплокровные животные выбирают места для защиты от холода или жары. Характерны массовые скопления животных для поддержания тепла, сезонные миграции, умение создавать норы и зарываться в снег. В норе, вырытой под снегом, температура может быть выше на 15-18 оС, чем вокруг. Для многих животных северных широт характерны запасание корма, спячка и миграция.
Отклонение температуры от нормативных показателей приводит к необратимым последствиям для организма. Поведенческая адаптация характерна только для животных. Растения этот фактор не используют.
Разнообразие температурных условий на Земле
Вегетационный период растений зависит от того, в каком поясе они обитают. В тропическом поясе он длится круглый год, в умеренном – от весны до осени, в полярном поясе Северного полушария – до 2 месяцев.
На полюсе Северного полушария зимняя температура – 71,2 оС. В Южном полушарии наименьшая зафиксированная температура -89,2 оС. Самые жаркие места находятся в Африке, в районе экватора. Температура в тени достигает 58 оС, а почва прогревается до 70-80 оС. В пределах одного пояса проявляются различия температурных условий. Более темные почвы лучше прогреваются. Летом в лесу прохладнее, чем на открытой местности.
Каждый вид живых существ выбирает приемлемый температурный режим. Для одного и того же растения в разный период жизни требуется разное количество тепла.
Источник
Н.В. Чибисова, Е.К. Долгань
Экологическая химия
Учебное пособие / Калинингр. ун-т. — Калининград, 1998. — 113 с.
1.1. Экологические факторы среды
Окружающая организм среда — это природные тела и явления, с которыми она находится в прямых или косвенных отношениях. Условия среды, способные оказывать прямое или косвенное влияние на живые организмы, называются экологическими факторами. Существует несколько классификаций экологических факторов среды. Наиболее простой и ставшей классической является классификация, по которой экологические факторы среды делятся на две категории: абиотические факторы (факторы неживой природы) и биотические факторы (факторы живой природы).
К абиотическим факторам относятся климатические — свет, температура, влага, движение воздуха, давление; эдафогенные (почвенные) — механический состав, влагоемкость, воздухопроницаемость, плотность; орографические — рельеф, высота над уровнем моря, экспозиция склона; химические — газовый состав воздуха, солевой состав среды, концентрация, кислотность и состав почвенных растворов.
К биотическим факторам относятся фитогенные (растительные организмы), зоогенные (животные), микробиогенные (вирусы, простейшие, бактерии, риккетсии) и антропогенные (деятельность человека).
Оригинальную классификацию экологических факторов предложил А.С. Мончадский (1962), исходя из того, что приспособительные реакции организмов к тем или иным факторам среды определяются степенью постоянства этих факторов. Это:
— первичные периодические факторы (температура, свет), зависящие от периодичности вращения Земли и смены времен года;
— вторичные периодические факторы (влажность, осадки, динамика растительной пищи, содержание растворенных газов в воде, внутривидовые взаимодействия) как следствие первичных периодических;
— непериодические факторы (эдафические факторы, взаимодействие между разными видами, антропогенные воздействия, почвенно-грунтовые факторы), не имеющие правильной периодичности.
Воздействие химического компонента абиотического фактора на живые организмы выражается в существовании некоторых верхних и нижних границ амплитуды допустимых колебаний отдельных факторов (температура, соленость, рН, газовый состав и др.), то есть определенный режим существования. Чем шире пределы какого-либо фактора, тем выше устойчивость, или, как ее называют, толерантность, данного организма.
Лимитирующим фактором развития растений является элемент, концентрация которого лежит в минимуме. Это определяется законом, называемым законом минимума Ю.Либиха (1840). Либих, химик-органик, один из основоположников агрохимии, выдвинул теорию минерального питания растений. Урожай культур часто лимитируется элементами питания, присутствующими не в избытке, такими как СО2 и Н2О, а теми, которые требуются в ничтожных количествах. Например: бор — необходимый элемент питания растений, но его мало содержится в почве. Когда его запасы исчерпываются в результате возделывания одной культуры, то рост растений прекращается, если даже другие элементы находятся в изобилии. Закон Либиха строго применим только в условиях стационарного состояния. Необходимо учитывать и взаимодействие факторов. Так, высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора может изменять скорость потребления элемента питания, содержащегося в минимальном количестве. Иногда организм способен заменять (частично) дефицитный элемент другим, более доступным и химически близким ему. Так, некоторым растениям нужно меньше цинка, если они растут на свету, а моллюски, обитающие в местах, где есть много стронция, заменяют им частично кальций при построении раковины.
Экологические факторы среды могут оказывать на живые организмы воздействия разного рода:
1) раздражители, вызывающие приспособительные изменения физиологических и биохимических функций (например, повышение температуры воздуха ведет к увеличению потоотделения у млекопитающих и к охлаждению тела);
2) ограничители, обусловливающие невозможность существования в данных условиях (например, недостаток влаги в засушливых районах препятствует проникновению туда многих организмов);
3) модификаторы, вызывающие анатомические и морфологические изменения организмов (например, запыленность окружающей среды в индустриальных районах некоторых стран привела к образованию черных бабочек березовых пядениц, сохранивших свою светлую окраску в сельских местностях);
4) сигналы, свидетельствующие об изменении других факторов среды.
В характере воздействия экологических факторов на организм выявлен ряд общих закономерностей.
Закон оптимума — положительное или отрицательное влияние фактора на организмы — зависит от силы его воздействия. Недостаточное или избыточное действие фактора одинаково отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия экологического фактора называется зоной оптимума. Одни виды выносят колебания в широких пределах, другие — в узких. Широкая пластичность к какому-либо фактору обозначается прибавлением частицы «эври», узкая — «стено» (эвритермные, стенотермные — по отношению к температуре, эвриотопные и стенотопные — по отношению к местам обитания).
Неоднозначность действия фактора на разные функции. Каждый фактор неоднозначно влияет на разные функции организма. Оптимум для одних процессов может быть неблагоприятным для других. Например, температура воздуха более 40°С у холоднокровных животных увеличивает интенсивность обменных процессов в организме, но тормозит двигательную активность, что приводит к тепловому оцепенению.
Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо из факторов среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Так, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания выше при морозе с сильным ветром, нежели в безветренную погоду. Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы и полностью заменить один из них другим нельзя. Дефицит тепла в полярных областях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью в летнее время. Для каждого вида животных необходим свой набор экологических факторов.
Воздействие химического компонента абиотического фактора на живые организмы. Абиотические факторы создают условия обитания растительных и животных организмов и оказывают прямое или косвенное влияние на жизнедеятельность последних. К абиотическим факторам относят элементы неорганической природы: материнская порода почвы, химический состав и влажность последней, солнечный свет, теплота, вода и ее химический состав, воздух, его состав и влажность, барометрическое и водное давление, естественный радиационный фон и др. Химическими компонентами абиотических факторов являются питательные вещества, следы элементов, концентрация углекислого газа и кислорода, ядовитые вещества, кислотность (рН) среды.
Влияние рН на выживаемость организмов-гидробионтов. Большинство организмов не выносят колебаний величины рН. Обмен веществ у них функционирует лишь в среде со строго определенным режимом кислотности-щелочности. Концентрация водородных ионов во многом зависит от карбонатной системы, которая является важной для всей гидросферы и описывается сложной системой равновесий, устанавливающихся при растворении в природных пресных водах свободного СО2, по реакции:
СО2 + Н2О Ы Н2СО3 Ы Н+ + НС .
Именно эта реакция является причиной того, что рН пресных природных вод редко бывает теоретически нейтральной, то есть равной 7. Чаще всего рН чистой воды колеблется от 6,9 до 5,6. В природе приведенное выше равновесие в чистом виде не существует, так как на природные воды оказывает действие многочисленные факторы: температура, давление, содержание в атмосфере кислорода, аммиака, диоксида и триоксида серы, азота, состав пород по которым протекает река или расположено озеро. рН сравнительно легко измерить, поэтому его изучили во многих водных местообитаниях. Если рН не приближается к крайнему значению (от 6,5 до 8,5), то сообщества способны компенсировать изменения этого фактора и толерантность сообщества к диапазону рН, встречающемуся в природе, весьма значительна. Так как изменение рН пропорционально изменению количества СО2, рН может служить индикатором скорости общего метаболизма сообщества (фотосинтеза и дыхания). В воде с низким рН содержится мало биогенных элементов, в связи с чем продуктивность здесь мала. рН сказывается и на распределении водных организмов. Растения растут в воде с рН ниже 7,5 (Isoetes и Sparganium), от 7,7 до 8,8 (Potamogeton и Elodea canadensis), от 8,4 до 9,0 (Typha angustifolia). Развитие сфагновых мхов стимулируют кислые воды торфяников, в которых очень редки моллюски, ввиду отсутствия извести, зато часто встречаются личинки двукрылых из рода Chaoborus. Рыбы выносят рН в пределах от 5,0 до 9,0, но некоторые виды способны приспосабливаться к значению рН до 3,7. При рН > 10 вода гибельна для всех рыб. Максимальная продуктивность вод приходится на рН между 6,5 и 8,5. В таблице 1.1 указаны основные величины рН для пресноводных рыб Европы.
Аэробные и анаэробные организмы. Аэробными организмами называются такие организмы, которые способны жить и развиваться только при наличии в среде свободного кислорода, используемого ими в качестве окислителя. К аэробным организмам принадлежат все растения, большинство простейших и многоклеточных животных, почти все грибы, то есть подавляющее большинство известных видов живых существ. У животных жизнь в отсутствие кислорода (анаэробиоз) встречается как вторичное приспособление. Аэробные организмы осуществляют биологическое окисление главным образом посредством клеточного дыхания. В связи с образованием при окислении токсичных продуктов неполного восстановления кислорода, аэробные организмы обладают рядом ферментов (каталаза, супероксиддисмутаза), обеспечивающих их разложение и отсутствующих или слабо функционирующих у облигатных анаэробов, для которых кислород оказывается вследствие этого токсичным. Наиболее разнообразна дыхательная цепь у бактерий, обладающих не только цитохромоксидазой, но и другими терминальными оксидазами. Особое место среди аэробных организмов занимают организмы, способные к фотосинтезу, — цианобактерии, водоросли, сосудистые растения. Выделяемый этими организмами кислород обеспечивает развитие всех остальных аэробных организмов. Организмы, способные развиваться при низкой концентрации кислорода (Ј 1 мг/л), называются микроаэрофилами.
Анаэробные организмы способны жить и развиваться при отсутствии в среде свободного кислорода. Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Распространены они главным образом среди прокариот. Метаболизм их обусловлен необходимостью использовать иные окислители, чем кислород. Многие анаэробные организмы, использующие органические вещества (все эукариоты, получающие энергию в результате гликолиза), осуществляют различные типы брожения, при которых образуются восстановленные соединения — спирты, жирные кислоты. Другие анаэробные организмы — денитрифицирующие (часть из них восстанавливает окисное железо), сульфатвоссстанавливающие, метанообразующие бактерии — используют неорганические окислители: нитрат, соединения серы, СО2. Анаэробные бактерии разделяются на группы маслянокислых и т.д. в соответствии с основным продуктом обмена. Особую группу анаэробов составляют фототрофные бактерии. По отношению к О2 анаэробные бактерии делятся на облигатных, которые неспособны использовать его в обмене, и факультативных (например, денитрифицирующие), которые могут переходить от анаэробиоза к росту в среде с О2. На единицу биомассы анаэробные организмы образуют много восстановленных соединений, основными продуцентами которых в биосфере они и являются. Последовательность образования восстановленных продуктов (N2, Fe2+, H2S, CH4), наблюдаемая при переходе к анаэробиозу, например в донных отложениях, определяется энергетическим выходом соответствующих реакций. Анаэробные организмы развиваются в условиях, когда О2 полностью используется аэробными организмами, например в сточных водах, илах.
Таблица 1.1
Значения рН для пресноводных рыб Европы (по Р.Дажо, 1975)
рН | Характер воздействия на пресноводных рыб |
3,0 — 3,5 | Гибельно для рыб; выживают некоторые растения и беспозвоночные |
3,5 — 4,0 | Гибельно для лососевых рыб; плотва, окунь, щука могут выжить после акклиматизации |
4,0 — 4,5 | Гибельно для многих рыб, размножается только щука |
4,5 — 5,0 | Опасно для икры лососевых рыб |
5,0 — 9,0 | Область, пригодная для жизни |
9,0 — 9,5 | Опасно для окуня и лососевых рыб в случае длительного воздействия |
9,5 — 10,0 | Вредно для развития некоторых видов, гибельно для лососевых при большой продолжительности воздействия |
10,0 — 10,5 | Переносится плотвой в течение очень короткого времени |
10,5 — 11,5 | Смертельно для всех рыб |
Влияние количества растворенного кислорода на видовой состав и численность гидробионтов. Степень насыщенности воды кислородом обратно пропорциональна ее температуре. Концентрация растворенного О2 в поверхностных водах изменяется от 0 до 14 мг/л и подвержена значительным сезонным и суточным колебаниям, которые в основном зависят от соотношения интенсивности процессов его продуцирования и потребления. В случае высокой интенсивности фотосинтеза вода может быть значительно пересыщена О2 (20 мг/л и выше). В водной среде кислород является ограничивающим фактором. О2 составляет в атмосфере 21% (по объему) и около 35% от всех газов, растворенных в воде. Растворимость его в морской воде составляет 80% от растворимости в пресной воде. Распределение кислорода в водоеме зависит от температуры, перемещения слоев воды, а также от характера и количества живущих в нем организмов. Выносливость водных животных к низкому содержанию кислорода у разных видов неодинакова. Среди рыб установлено четыре группы по их отношению к количеству растворенного кислорода:
1) 7 — 11 мг / л — форель, гольян, подкаменщик;
2) 5 — 7 мг / л — хариус, пескарь, голавль, налим;
3) 4 мг / л — плотва, ерш;
4) 0,5 мг / л — карп, линь.
Некоторые виды организмов приспособились к сезонным ритмам в потреблении О2, связанными с условиями жизни. Так, у рачка Gammarus Linnaeus выявили, что интенсивность дыхательных процессов возрастает вместе с температурой и изменяется в течение года. У животных, живущих в местах, бедных кислородом (прибрежный ил, донный ил), обнаружены дыхательные пигменты, служащие резервом кислорода. Эти виды способны выживать, переходя к замедленной жизни, к анаэробиозу или благодаря тому, что у них имеется d-гемоглобин, обладающий большим сродством к кислороду (дафнии, олигохеты, полихеты, некоторые пластинчатожаберные моллюски). Другие водные беспозвоночные поднимаются за воздухом на поверхность. Это имаго жуков-плавунцов и водолюбов, гладыши, водяные скорпионы и водяные клопы, прудовики и катушка (брюхоногие моллюски). Некоторые жуки окружают себя воздушным пузырьком, удерживаемым волоском, а насекомые могут использовать воздух из воздухоносных пазух водяных растений.
Зависимость живых организмов от концентрации минеральных солей в среде. В естественных водах концентрация минеральных солей весьма различна. В пресной воде максимальное содержание растворенных веществ равно 0,5 г/л. В морской воде среднее содержание растворенных солей 35 г/л. В солоноватых водах этот показатель очень изменчив. Соленость обычно выражается в промилле (‰) и является одной из основных характеристик водных масс, распределения морских организмов, элементов морских течений и т.д. Особую роль она играет в формировании биологической продуктивности морей и океанов, так как многие организмы очень восприимчивы к незначительным ее изменениям. Многие виды животных являются целиком морскими (многие виды рыб, беспозвоночных и млекопитающих).
В солоноватых водах обитают виды, способные переносить повышенную соленость. В эструариях, где соленость ниже 3 ‰, морская фауна беднее. В Балийском море, соленость которого составляет 4 ‰, встречаются балянусы, кольчецы, а также коловратки и гидроиды.
Водные организмы подразделяются на пресноводные и морские по степени солености воды, в которой они обитают. Сравнительно немногие растения и животные могут выдерживать большие колебания солености. Такие виды обычно обитают в эструариях рек или в соленых маршах и носят названия эвригалинных. К ним относятся многие обитатели литорали (соленость около 35 ‰), эструариев рек, солоноватоводных (5 — 35 ‰) и ультрасоленых (50 — 250 ‰), а также проходные рыбы, нерестящиеся в пресной воде (< 5 ‰). Наиболее удивительный пример — рачок Artemia salina, способный существовать при солености от 20 до 250 ‰ и даже переносить полное временное опреснение. Способность существовать в водах с различной соленостью обеспечивается механизмами осморегуляции, которую поддерживают относительно постоянные концентрации осмотически активных веществ в жидкостях внутренней среды.
По отношению к солености среды животные делятся на стеногалинных и эвригалинных. Стеногалинные животные — животные, не выдерживающие значительные изменения солености среды. Это подавляющее число обитателей морских и пресных водоемов. Эвригалинные животные способны жить при широком диапазоне колебаний солености. Например, улитка Hydrobia ulvae способна выживать при изменении концентрации NaCl от 50 до 1600 ммоль/мл. К ним относятся также медуза Aurelia aurita, съедобная мидия Mutilus edulis, краб Carcinus maenas, аппендикулярия Oikopleura dioica.
Устойчивость по отношению к изменению солености меняется с температурой. Например, гидроид Cordylophora caspia лучше переносит низкую соленость при невысокой температуре; десятиногие раки переходят в малосоленые воды, когда температура становится слишком высокой. Виды, обитающие в солоноватых водах, отличаются от морских форм размерами. Так, краб Carcinus maenas в Балтийском море имеет маленькие размеры, а в эструариях и лагунах — крупные. То же можно сказать и о съедобной мидии Mutilus edulis, имеющей в Балтийском море средний размер 4 см, в Белом море — 10 — 12 см, а в Японском — 14 — 16 см в соответствии с увеличением солености. Кроме того, от солености среды зависит и строение эвригалинных видов. Рачок артемия при солености 122 ‰имеет размер 10 мм, при 20 ‰ достигает 24 — 32 мм. Одновременно изменяется форма тела, придатков и окраска.
Источник