Какой металл рассыпается в порошок при температуре 33 градуса

Вы когда-нибудь слышали такое понятие как “оловянная чума”? Нет? Не подумайте ничего плохого. Это явление не имеет ничего общего с реальной чумой, которая погубила в свое время половину Европы. Это физическое явление проявляется с оловом при определенной температуре. Интересно? Тогда я вам расскажу сейчас про это явление поподробней.

Процесс распада олова, проявление эффекта “оловянная чума”

Немного истории для лучшего понимания

Итак, прежде чем приступить к объяснению физики процесса, давайте немного углубимся в историю олова.

Данный метал известен человечеству не одну тысячу лет и в свое время являлся стратегически важным ресурсом. В силу своей пластичности при комнатной температуре его активно использовали, например, при производстве пуговиц для обмундирования, всевозможных украшений и т. д.

Например, в 1910 году полярный английский исследователь Р. Скотт организовал и лично возглавил полярную экспедицию на Южный полюс с целью покорить его. Поход растянулся на многие месяцы и идущая экспедиция оставляла небольшие схроны с провиантом и топливом в канистрах, запечатанных оловянными пробками.

Полярная экспедиция

В 1912 году исследователи все-таки покорили полюс, но оказались не первыми (их опередил Руаль Амундсен). Но не это самое важное. Отправившись обратно по ранее проложенному маршруту они обнаружили, что в ближайшем складе канистры с топливом вскрыты и пусты. Добравшись до следующего схрона увидели то же самое, канистры с топливом были пусты.

К сожалению, экспедиция просто напросто замерзла, так и не сумев согреться.

Другие факты

олово подвергшееся воздействию оловянной чумы

В конце 19-го столетия из Голландии в Российскую Империю был отправлен целый состав, загруженный чистейшим оловом в слитках. Как только поезд пришел в Москву, то при осмотре вагонов вместо олова там был лишь серый порошок.

Приблизительно в то же время была снаряжена экспедиция для изучения Сибири. Но при первом же сильном морозе случился казус, вся оловянная посуда превратилась в серый порошок.

Уже в 20-ом столетии на военном складе случилось ЧП, со всех мундиров пропали оловянные пуговицы. Вместо них все так же нашли серый порошок. Изучив его, был сделан вывод что металл был поражен так называемой оловянной чумой.

Олово до и после

Ну как интересно стало? Что же это за явление такое: оловянная чума. Давайте перейдем к объяснению.

Что такое оловянная чума

Долгое время ученые не могли объяснить, что же такое оловянная чума и только после гибели полярной экспедиции было произведено масштабное исследование, которое разгадало секрет.

Структура металла

Только после тщательного исследования металлов с помощью рентгеновских лучей удалось рассмотреть кристаллическую решетку металлов. И было дано научное объяснение.

Было установлено, что абсолютно любой металл может обладать различной кристаллической формой. Наиболее устойчивой модификацией при температуре выше и равной комнатной является олово. Оно обладает вязкой и достаточно пластичной структурой.

Но как только температура опускается ниже -13 градусов по Цельсию кристаллическая структура, начинает претерпевать изменения.

При этом атомы начинают располагаться в пространстве на большем расстоянии, и формируется следующая модификация металла – серое олово.

При этом металл полностью утрачивает свои первоначальные свойства и, по сути, превращается в полупроводник. При этом начинают возрастать внутренние напряжения и это приводит к тому, что олово буквально распадается на порошок. Именно так протекает оловянная чума.

Скорость такой трансформации зависит от температуры. Так наиболее быстро распад происходит при температуре -33 градуса по Цельсию. Именно этот эффект стал причиной гибели экспедиции, полностью уничтожил вагон олова и разрушил много ценных экспонатов.

Олово после оловянной чумы

Как победили оловянную чуму

Научное сообщество долгое время билось над поиском «лекарства» от этого явления и наконец британской ассоциации производителей удалось найти решение.

Они просто создали новый сплав, в котором к олову добавили другие металлы, которые стабилизировали постоянные свойства олова.

Полученный сплав стали называть «Пьютер» и он состоит из 95% олова, 2% меди и 3% сурьмы. Вновь полученный сплав активно используется при производстве различных украшений, предметов быта и т. п.

Так, например, знаменитая статуэтка “Оскар” выполнена из этого сплава и покрыта золотым напылением.

статуэтка Оскар

Это все, что я хотел вам рассказать о таком интересном явлении как оловянная чума. Если вам понравился материал, то поставьте лайк и поделитесь статьей в социальных сетях. Спасибо за внимание!

Источник

На чтение 13 мин. Обновлено 16 декабря, 2020

Основные физические свойства олова. Изделие из какого металла рассыпается в порошок при температуре 33 градуса

Ответы@Mail.Ru: Что такое «оловянная чума»?

Окисление олова, типа ржавчины.

Природное олово существует в двух модификациях: серебристый металл с плотностью 7,3 г/ом3 – это белое олово и серое олово – материал со свойствами полупроводника и плотностью 5,8 г/см3. При охлаждении белое олово переходит в серое, резко увеличивается удельный объем, металл рассыпается в серый порошок. Это и есть оловянная чума. Такое превращение быстрее всего происходит при температуре -33°С, а если есть контакт белого олова с серым, то «оловянная чума» быстро распространяется от одного предмета к другому. Считается, что оловянные предметы надо хранить в теплом помещении.

Читайте также:  Какую температуру выдерживает рассада клубники

Добрый вечер всем! Всем форумчанам ответившим на вопрос о том что такое оловянная чума огромное спасибо! А вот я нигде не могу найти информацию о том подвержен ли сплав Розе который содержит 25% олова или например похожий сплав Вуда этой самой оловянной чуме! Может кто знает ответ на этот вопрос?

Что такое оловянная чума?

Уже в IV тысячелетии до нашей эры человечество узнало о существовании олова в природе. Во все времена данный металл был очень дорог ввиду его малодоступности. В этой связи упоминания о нем редко встречаются в древних греческих и римских письменных источниках.

Олово вместе с медью выступает в качестве одного из компонентов оловянистой бронзы. Она была изобретена в середине или конце III тысячелетия до нашей эры. Так как бронза считалась в древние времена самым прочным из всех сплавов, известных человеку, олово рассматривалось как стратегический металл. Такое отношение к нему сохранялось на протяжении более 2 тыс. лет.

Месторождения

Самые крупные бассейны располагаются в Юго-Восточной Азии и Китае. Довольно обширные залежи были обнаружены также в Австралии и Южной Америке (в Перу, Бразилии, Боливии). В России месторождения находятся в Хабаровском крае, в Солнечном районе (Соболиное и Фестивальное), Верхнебуреинском районе (Правоурмийское). Кроме этого, обнаружены залежи в Чукотском АО. Здесь находятся Пыркакайские штокверки, поселок/рудник Валькумей, Иультин. Их разработка была закрыта в 90-е годы. Месторождения олова также есть в Приморском кр., в Кавалеровском районе, в Якутии (Депутатское) и прочих регионах.

Гибель экспедиции к Южному полюсу

В 1910 г. капитан Р. Скотт – полярный исследователь из Англии – организовал экспедицию. Ее целью был Южный полюс. В то время на этой территории человек еще не был. Экспедиция заняла много месяцев. Путешественники шли по бескрайним просторам арктического материка. По пути они оставляли небольшие склады с продовольствием и керосином. К началу 1912 г. экспедиция достигла полюса. Однако к огромному разочарованию путешественников, они нашли там записку, в которой говорилось о том, что месяцем ранее здесь побывал Руаль Амудсен. Однако это была не самая главная беда. На обратном пути на первом же складе команда Скотта обнаружила, что емкости, в которых был керосин, стояли пустые. Замерзшие, уставшие люди не могли ни согреться, ни приготовить пищу. Добравшись с большим трудом до следующего склада, они обнаружили, что и там канистры пусты. Не имея больше сил сопротивляться холоду, все члены экспедиции погибли.

Другие метаморфозы

В конце позапрошлого столетия из Голландии в Россию отправился железнодорожный состав. В нем находились оловянные бруски. В Москве вагоны были вскрыты. Вместо брусков получатели увидели ни к чему не пригодный серый порошок. Примерно в то же время в Сибирь была отправлена экспедиция. Она была хорошо снаряжена. Организаторы экспедиции предусмотрели множество мелочей, чтобы сильные морозы не помешали путешествию. Однако один промах все же был допущен. Путешественники взяли с собой посуду из олова. Вскоре при первых же морозах она рассыпалась в порошок. Путешественники были вынуждены вырезать посуду из дерева. В начале XX столетия в Петербурге на одном из складов произошел скандал. В ходе ревизии обнаружилось, что на всех мундирах исчезли пуговицы. Вместо них в ящиках был только серый порошок. Его направили в лабораторию. По заключению исследователей, металл поразила оловянная чума. По мнению некоторых историков, в качестве одного из обстоятельств, повлиявших на поражение французской армии зимой 1812 г., может выступать исчезновение пуговиц с мундиров солдат.

Попытки объяснить феномен

Во всех описанных выше случаях имело место такое явление, как оловянная чума. Что это такое? В 1868 г. академик Фрицше представил доклад на одном из заседаний Петербургской академии. В нем он рассказал о том, как в железнодорожном составе был обнаружен порошок вместо оловянных брусков, как рассыпались пуговицы на военном складе. После его выступления в Академию стало приходить огромное количество аналогичных сообщений. Все они поступали из самых разных уголков Европы, а некоторые – даже из Северной Америки. Стоит сказать, что в эпоху Средневековья невежественные церковники полагали, что оловянная чума – это воздействие на металл темных сил, которые вызывают ведьмы. Множество ни в чем не повинных женщин было сожжено на кострах. Но со стремительным развитием науки нелепость этих утверждений становилась все более очевидной. Тем не менее объяснить, как возникает оловянная чума, что это, ученые не могли еще очень долго. Исследования активизировались после гибели команды Скотта. Дело в том, что канистры, в которых находился керосин, были запаяны оловом. Металл превратился в порошок, а жидкость вытекла.

Читайте также:  Если базальная температура 37 какой день беременности

Структура металла

Только после использования рентгеновского анализа ученые смогли объяснить, как возникает оловянная чума. Это явление обусловлено спецификой структуры металла. Рентгеновский анализ позволил заглянуть внутрь объектов, изучить их кристаллическое строение. В результате было сформулировано научное объяснение феномена. Исследователи выяснили, что любой металл может иметь разные кристаллические формы. Самой устойчивой модификацией при нормальной (комнатной) или повышенной температуре является олово. Этот металл вязкий и пластичный. Если температура опускается ниже 13 град., кристаллическая решетка начинает перестраиваться. При этом атомы располагаются в пространстве на большем расстоянии. Образуется новая модификация металла – серое олово. Оно теряет свои первоначальные свойства. Фактически металл перестает быть таковым и становится полупроводником. На участках соприкосновения различных кристаллических решеток возникают внутренние напряжения. Они приводят к растрескиванию структуры. В результате металл рассыпается в порошок. Так и возникает оловянная чума.

Нюансы

«Лекарство» от чумы

Ученые долго искали способ предотвратить «болезнь» металла. Выход из ситуации нашла британская гильдия производителей. Они создали новый сплав. К олову присоединили металлы, стабилизирующие его непостоянные свойства. Новый сплав получил название «пьютер». В него включено 95% олова, 2% меди и 5% сурьмы. Пьютер используется при изготовлении украшений, предметов быта, посуды и пр. Стоит сказать, что всем известный Кубок Америки, а также статуэтки «Оскар» производятся из пьютера, а потом покрываются серебряным и золотым напылением. Так им не страшна никакая оловянная чума.

Какое явление называют оловяной чумой

Окисление олова, если правильно помню.

Особенности и основные физические свойства.

Олово – металл, служивший человеку с незапамятных времен. Физические свойства олова обеспечили его основополагающую роль в истории человечества. Без него невозможно существование бронзы, остававшейся на протяжении многих веков единственным сплавом, из которого человек изготовлял практически все – от орудий труда до ювелирных украшений.

Олово – металл использующийся человеком с давних времен

Физические свойства олова

При нормальном давлении и температуре 20°C олово идентифицируется как металл с блеском бело-серебристого цвета. Медленно тускнеет на воздухе вследствие образования оксидной пленки.

Для олова, как и для всех металлов, характерна непрозрачность. Свободные электроны металлической кристаллической решетки заполняют межатомное пространство и отражают световые лучи, не пропуская их. Поэтому находясь в кристаллическом состоянии, металл имеет характерный блеск, а в порошкообразном виде этот блеск утрачивает.

Обладает отличной ковкостью, т. е. легко подвергается обработке с помощью давления. Ковкость олову придает его высокая пластичность в сочетании с низким сопротивлением деформации. Пластичность металла позволяет раскатать его в тонкую фольгу, называемую станиолем или оловянной бумагой. Ее толщина колеблется от 0,008 до 0,12 мм. Ранее станиоль находил применение в качестве подложки при изготовлении зеркал и в электротехнике при производстве конденсаторов, пока не был полностью вытеснен алюминиевой фольгой.

У олова свойства достаточно мягкого металла. Его твердость по шкале Бринелля составляет 3,9-4,2 кгс/мм².

Относится к легкоплавким металлам. Температура плавления олова – 231,9°C – способствует быстрому извлечению его из руды. Олово просто сплавляется с другими металлами, что обеспечивает его обширное применение в промышленности.

Плотность при температуре 20°C составляет 7,29 г/см³. По этому показателю олово в 2,7 раза тяжелее алюминия, но легче серебра, золота, платины и приближено к плотности железа (7,87 г/см³).

Металл закипает при высокой температуре, равной 2620°C, долго оставаясь жидким в расплаве.

Химически чистое олово при обычной температуре обладает незначительной прочностью. При растяжении предел механической прочности составляет всего 1,7 кгс/мм², а относительное удлинение – 80-90%. Эти характеристики говорят о том, что деформировать оловянный прут можно без особых усилий в разных направлениях. При этом смещение слоев кристаллической решетки металла относительно друг друга сопровождается специфичным треском.

Полиморфизм олова

Полиморфизм (аллотропия) – физическое явление, основанное на перестроении атомов или молекул веществ в твердом состоянии, что влечет за собой изменение их свойств. Каждая полиморфная модификация устойчиво существует только в строго определенном интервале значений температур и давлений.

Любой металл обладает специфической кристаллической решеткой. При изменении внешних физических условий кристаллическая решетка может меняться. Полиморфизм металлов используют при их термической обработке в промышленности.

Олово – металл по разному реагирующий на химические воздействия

Химические свойства олова определяются его положением в периодической системе элементов Д. И. Менделеева и предусматривают амфотерность, т. е. способность проявлять как основные, так и кислотные свойства. Напрямую зависят от полиморфизма олова физические свойства.

Для металла известны три аллотропные модификации: альфа, бета и гамма. Полиморфная перестройка кристаллических решеток возможна вследствие изменения симметрии электронных оболочек атомов под воздействием разных температур.

Особенности полиморфного перехода β→α

Процесс перехода из одной полиморфной модификации в другую происходит при изменении температуры. При этом наблюдают скачкообразные изменения физико-химических свойств металла.

Выше температуры 161°С бета-олово обратимо превращается в хрупкую гамма-модификацию. Ниже температуры 13°С бета-модификация необратимо переходит в порошкообразное серое олово. Данный полиморфный переход совершается с очень малой скоростью, но стоит только на бета-олово попасть крупинкам альфа-модификации, как плотный металл рассыпается в пыль. Поэтому полиморфный переход β→α иногда называют «оловянной чумой». Обратно альфа-модификация переводится в бета-модификацию только путем переплавки.

Читайте также:  Какая должна быть температура для помидор

Фазовый переход β→α значительно ускоряется при минусовых температурах окружающей среды и сопровождается увеличением удельного объема металла примерно на 25%, что приводит к его рассыпанию в порошок.

У олова есть уникальная реакция на мороз «оловянная чума»

В истории есть случаи, когда оловянные изделия на морозе становились серым порошком, обескураживая своих хозяев. «Оловянная чума» встречается редко и характерна лишь для химически чистого вещества. При наличии даже мельчайших примесей переход металла в порошок сильно замедляется.

Интересно предположение некоторых историков, что победу российскому императору Александру I над французской армией под командованием Наполеона Бонапарта помогла одержать «оловянная чума». При сильных морозах пуговицы на шинелях французов просто рассыпались в прах, и солдаты, замерзая, потеряли боеспособность.

Заключение

Олово обладает всеми типичными физическими свойствами металлов, а его полиморфизм по-своему удивителен. Без уникальной тягучести и пластичности этого металла невозможно представить себе современную промышленность. Почти половина от мировой добычи олова используется для производства пищевой жести. Оставшаяся половина расходуется для изготовления сплавов и различных соединений, применяемых во всех хозяйственных отраслях.

Источник

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой – плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты. Воздействие при этом примерно одинаковое.

Когда происходит нагревание, усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки, сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина – градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы – непременная основа для ковки, литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота, ограды из чугуна, ножи из стали или браслеты из меди), для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

Как понятно из этой части таблицы, самый легкоплавкий металл – ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия – 2519 °C, у железа – 2900 °C, у меди – 2580 °C, у ртути – 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов – у рения – 5596 °C. Наибольшая температура кипения – у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов. Самым лёгким металлом является литий, самым тяжёлым – осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа – очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах – это теплопроводность металлов. Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл – серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Источник

Источник