При какой температуре наступит равновесие системы хлор или кислород в этой

Вычисление энергии Гиббса
Задание 101.
Вычислите для следующих реакций:
а) 2NaF (к) + Cl2 (г) = 2NaCl (к) + F2
б) PbO2 (к) + 2Zn (к) = Pb (к) + 2ZnO (к)
Можно ли получить фтор по реакции (а) и восстановить РbO2 цинком по реакции (б). Ответ: +313,94 кДж; -4 17,4 кДж.
Решение:
Реакция имеет вид:
2NaF (к) + Cl2 (г) = 2NaCl (к) + F2
Для вычисления энергии Гиббса прямой реакции используются значения соответствующих веществ, приведённых в специальных таблицах. Зная, что есть функция состояния и, что для простых веществ, находящихся в устойчивом при стандартных условиях агрегатных состояниях, равны нулю, находим , получим:
= 2 (NaCl) – 2(NaF) = 2(-384,03) – 2(-54!,0) = +313,94 кДж.
То, что > 0, указывает на невозможность протекания прямой реакции при Т = 298 К и давлении взятых газов равном 1,01325 Па (760 мм. рт. ст. = 1 атм).
б) Реакция имеет вид:
PbO2 (к) + 2Zn (к) = Pb (к) + 2ZnO (к)
Находим реакции, получим:
= 2(ZnO) – (PbO2) = 2(-318,2) – (-219,0) = -417,4 кДж.
То, что < 0, указывает на возможность протекания прямой реакции при Т = 298 К и давлении взятых газов равном 1,01325 Па (760 мм. рт. ст. = 1 атм).
Ответ: +313,94 кДж; -4 17,4 кДж.
Равновесие системы
Задание 102.
При какой температуре наступит равновесие системы
4НСI (г) + 02 (г) = 2Н2О (г) + 2С12 (г); = -114,42 кДж?
Хлор или кислород в этой системе является более сильным окислителем и при какой температуре? Ответ: 891 К.
Решение:
Уравнение реакции имеет вид:
4НСI (г) + O2 (г) = 2Н2О (г) + 2С12 (г); = -114,42 кДж?
< 0, значит, реакция экзотермическая, идёт с выделением теплоты.
Находим из соотношения:
Для данной реакции:
= 2(Н2О) + 2 (Cl2) – (4 (HCl) + (O2);
= 2(188,72) + 2(222,95) –[ 4(186,69) + 205,03] = 128,41 Дж/моль . К.
Зная и , и, то, что = 0 можно вычислить температуру, при которой наступит равновесие системы, получим:
= – Т
При = 0 получим равенство:
= Т
Тогда
Т = / = 114,42/(128,41 . 10-3) = 891 K.
Находим энергии Гиббса реакции:
= – Т = -114,42 – 298(-0б12841) = -76б15 кДж.
Так как < 0, то реакция при стандартных условиях возможна, т.е. будет идти окисление хлора и при данных условиях (Т = 298) кислород является более сильным окислителем до температуры 891 К, т. е. до тех пор пока не наступит состояние равновесия системы, а выше 891 К более сильным окислителем станет кислород.
Ответ: 891 К.
Задание 103.
Восстановление Fe3O4 оксидом углерода идет по уравнению
Fe3O4 (к) + СО (г) = 3ЕеО (к) + СO2 (г)
Вычислите и сделайте вывод о возможности самопроизвольного протекания этой реакции при стандартных условиях, Чему равно в этом процессе? Ответ. +24,19 кДж; + 31,34 Дж/(моль . К).
Решение:
Реакция имеет вид:
Fe3O4 (к) + СО (г) = 3ЕеО (к) + СO2 (г)
Для вычисления энергии Гиббса прямой реакции используются значения соответствующих веществ, приведённых в специальных таблицах. Зная, что есть функция состояния и, что для простых веществ, находящихся в устойчивом при стандартных условиях агрегатных состояниях, равны нулю, находим , получим:
= 3 (FeO) + (CO2) – [ (Fe3O4) + (CO)];
= 3(-244,3) + (-394,38) – [(-1014,2) + (-137,27) = +24,19 кДж.
То, что > 0, указывает на невозможность протекания прямой реакции при Т = 298 К и давлении взятых газов равном 1,01325 Па (760 мм. рт. ст. = 1 атм).
Находим из соотношения:
Для данной реакции:
= FeО) + (CO2) – [(Fe3O4) + )))э (CO)];
= (3 . 54,0 + 213,65) – (146,4 + 197,91) = +31,34 Дж/моль .К.
Ответ. +24,19 кДж; + 31,34 Дж/(моль . К).
Энтропия системы
Задание 104.
Реакция горения ацетилена идет по уравнению
С2Н2 (г) + 5/2О2 (г) = 2СО2 (г) + Н2О (ж)
Вычислите и . Объясните уменьшение энтропии в результате этой реакции. Ответ: -1235,15 кДж; -216,15 Дж/(моль .К).
Решение:
Реакция имеет вид:
С2Н2 (г) + 5/2О2 (г) = 2СО2 (г) + Н2О (ж)
Для вычисления энергии Гиббса прямой реакции используются значения соответствующих веществ, приведённых в специальных таблицах. Зная, что есть функция состояния и, что для простых веществ, находящихся в устойчивом при стандартных условиях агрегатных состояниях, равны нулю, находим , получим:
= 2 (CO2) + (Н2O) – [(С2Н2) + 5/2(O2)];
= 2(-394,38) + (-237,19) – [(209,20) = -1235,15 кДж.
Энтропия () является функцией состояния, т. е. её изменение зависит только от начального (S1) и конечного (S2) состояний и, не зависит от пути процесса:
Значения находим из специальных таблиц.
Для данной реакции:
= 2S0(СО2) + S0(Н2О) – [( S0(С2Н2) + 5/2 So(O2);
= (2 . 213,65 + 69,94) – (200,82 + 5/2 .205,03) = -216,15 Дж/моль .К.
Уменьшение энтропии объясняется тем, что система в результате реакции переходит в более устойчивое состояние, так как из 3,5 объёмов газообразных веществ происходит образование 2 объёмов газообразных веществ и образуется 1 моль жидкого вещества, т. е. объём системы уменьшается, и агрегатное состояние вещества упорядочивается, < 0.
Ответ: -1235,15 кДж; -216,15 Дж/(моль . К).
Задание 105.
Уменьшается или увеличивается энтропии при переходах: а) воды в пар; б) графита в алмаз? Почему? Вычислите для каждого превращения. Сделайте вывод о количественном изменении энтропии при фазовых и аллотропических превращениях. Ответ: а) 118,78 Дж(моль . К); 6) -3,25 Дж/(моль . К).
Решение:
Энтропия является свойством вещества, пропорциональным его количеству. Она обладает аддитивными свойствами, т. е. при соприкосновении систем суммируется. Энтропия отражает движение частиц вещества и является мерой неупорядоченности системы. Она возрастает с увеличением движения частиц (при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т.п.), > 0 Процессы, связанные с упорядоченностью системы (конденсация, кристаллизация, сжатие, упорядочение связей, полимеризация и т.п.) ведут к уменьшению энтропии, < 0.
а) Изменение значений энтропии при переходе воды в пар.
При переходе воды в пар энтропия будет возрастать, потому что при испарении воды происходит увеличение движения молекул, т. е. система переходит в менее устойчивое состояние, из жидкого в газообразное, > 0.
Уравнение реакции имеет вид:
Н2О (ж) → Н2О (г);
= [Н2О] (г) – [Н2О] (ж);
= 188,72 – 69,94 = +118,78 Дж/моль . К.
б) Изменение значений энтропии при переходе. При переходе графита в алмаз образуются более прочные связи между атомами углерода в алмазе, чем в графите, т. е. происходит процесс с упорядоченностью системы, упрочнение связей, что ведёт к уменьшению энтропии, < 0.
Уравнение реакции имеет вид:
С (графит) → С (алмаз);
= S0 С (алмаз) – S0С (графит);
= 2,44 – 5,69 = -3,25 Дж/моль . К.
Значения взяты из специальных таблиц.
Ответ: а) 118,78 Дж(моль . К); 6) -3,25 Дж/(моль . К).
Определение энергии Гиббса реакции
Задание 106.
Чем можно объяснить, что при стандартных условиях невозможна экзотермическая реакция
Н2 (г) + СО2 (г) = СО (г) + Н2О (ж); = -2,85 кДж.
Зная тепловой эффект реакции и абсолютные стандартные энтропии соответствующих веществ, определите этой реакции. Ответ: +19,91 кДж.
Решение:
Уравнение реакции имеет вид:
Н2 (г) + СО2 (г) = СО (г) + Н2О (ж); = -2,85 кДж.
Значения находим из специальных таблиц.
Для данной реакции:
= S0(СО) + S0 (Н2О) – [( S0(Н2) + (S0СO2)];
= (197,91 + 69,94) – (130,59 + 213,65) = -76,39 Дж/моль . К.
Теперь вычислим реакции из уравнения Гиббса:
= – Т;
= -2,85 – 298(-76,39) = +19,91 кДж.
То, что > 0, указывает на невозможность протекания прямой реакции при Т = 298 К и давлении взятых газов равном 1,01325 Па (760 мм. рт. ст. = 1 атм).
Ответ: +19,91 кДж.
Задание 107.
Прямая или обратная реакция будет протекать при стандартных условиях в системе
2NO (г) + O2 (г) = 2NO2 (г)
Ответ мотивируйте, вычислив прямой реакции. Ответ: -69,70 кДж.
Решение:
Уравнение процесса:
2NO (г) + O2 (г) = 2NO2 (г)
Для вычисления энергии Гиббса прямой реакции используются значения соответствующих веществ, приведённых в специальных таблицах. Зная, что есть функция состояния и, что для простых веществ, находящихся в устойчивом при стандартных условиях агрегатных состояниях, равны нулю, находим , получим:
= 2(NO2) – 2Г(NO) = 2 . 51,84 – 2 . 86,69 = -69,70 кДж.
То, что < 0, указывает на возможность протекания прямой реакции при Т = 298 К и давлении взятых газов равном 1,01325 Па (760 мм. рт. ст. = 1 атм.), обратная реакция не протекает при н. у..
Ответ: -69,70 кДж.
Источник
Обратимые и необратимые химические реакции
Химические реакции бывают обратимые и необратимые.
Необратимыми реакциями называют такие реакции, которые идут только в одном (прямом →) направлении:
т.е. если некоторая реакция A + B = C + D необратима, это значит, что обратная реакция C + D = A + B не протекает.
Обратимые реакции – это такие реакции, которые идут как в прямом, так и в обратном направлении (⇄):
т.е., например, если некая реакция A + B = C + D обратима, это значит, что одновременно протекает как реакция A + B → C + D (прямая), так и реакция С + D → A + B (обратная).
По сути, т.к. протекают как прямая, так и обратная реакции, реагентами (исходными веществами) в случае обратимых реакций могут быть названы как вещества левой части уравнения, так и вещества правой части уравнения. То же самое касается и продуктов.
Однако, условно принято считать, что реагентами в каждом конкретном уравнении обратимой реакции являются те вещества, которые записаны в его левой части, а продуктами – те, что записаны в правой, т.е.:
Для любой обратимой реакции возможна ситуация, когда скорость прямой и обратной реакций равны. Такое состояние называют состоянием равновесия.
В состоянии равновесия концентрации как всех реагентов, так и всех продуктов неизменны. Концентрации продуктов и реагентов в состоянии равновесия называют равновесными концентрациями.
Смещение химического равновесия под действием различных факторов
Вследствие таких внешних воздействий на систему, как изменение температуры, давления или концентрации исходных веществ или продуктов, равновесие системы может быть нарушено. Однако после прекращения этого внешнего воздействия система через некоторое время перейдет в новое состояние равновесия. Такой переход системы из одного равновесного состояния в другое равновесное состояние называют смещением (сдвигом) химического равновесия.
Для того чтобы уметь определять, каким образом сдвигается химическое равновесие при том или ином типе воздействия, удобно пользоваться принципом Ле Шателье:
Если на систему в состоянии равновесия оказать какое-либо внешнее воздействие, то направление смещения химического равновесия будет совпадать с направлением той реакции, которая ослабляет эффект от оказанного воздействия.
Влияние температуры на состояние равновесия
При изменении температуры равновесие любой химической реакции смещается. Связано это с тем, что любая реакция имеет тепловой эффект. При этом тепловые эффекты прямой и обратной реакции всегда прямо противоположны. Т.е. если прямая реакция является экзотермической и протекает с тепловым эффектом, равным +Q, то обратная реакция всегда эндотермична и имеет тепловой эффект, равный –Q.
Таким образом, в соответствии с принципом Ле Шателье, если мы повысим температуру некоторой системы, находящейся в состоянии равновесия, то равновесие сместится в сторону той реакции, при протекании которой температура понижается, т.е. в сторону эндотермической реакции. И аналогично, в случае, если мы понизим температуру системы в состоянии равновесия, равновесие сместится в сторону той реакции, в результате протекания которой температура будет повышаться, т.е. в сторону экзотермической реакции.
Например, рассмотрим следующую обратимую реакцию и укажем, куда сместится ее равновесие при понижении температуры:
Как видно из уравнения выше, прямая реакция является экзотермической, т.е. в результате ее протекания выделяется тепло. Следовательно, обратная реакция будет эндотермической, то есть протекает с поглощением тепла. По условию температуру понижают, следовательно, смещение равновесия будет происходить вправо, т.е. в сторону прямой реакции.
Влияние концентрации на химическое равновесие
Повышение концентрации реагентов в соответствии с принципом Ле Шателье должно приводить к смещению равновесия в сторону той реакции, в результате которой реагенты расходуются, т.е. в сторону прямой реакции.
И наоборот, если концентрацию реагентов понижают, то равновесие будет смещаться в сторону той реакции, в результате которой реагенты образуются, т.е. сторону обратной реакции (←).
Аналогичным образом влияет и изменение концентрации продуктов реакции. Если повысить концентрацию продуктов, равновесие будет смещаться в сторону той реакции, в результате которой продукты расходуются, т.е. в сторону обратной реакции (←). Если же концентрацию продуктов, наоборот, понизить, то равновесие сместится в сторону прямой реакции (→), для того чтобы концентрация продуктов возросла.
Влияние давления на химическое равновесие
В отличие от температуры и концентрации, изменение давления оказывает влияние на состояние равновесия не каждой реакции. Для того чтобы изменение давления приводило к смещению химического равновесия, суммы коэффициентов перед газообразными веществами в левой и в правой частях уравнения должны быть разными.
Т.е. из двух реакций:
изменение давления способно повлиять на состояние равновесия только в случае второй реакции. Поскольку сумма коэффициентов перед формулами газообразных веществ в случае первого уравнения слева и справа одинаковая (равна 2), а в случае второго уравнения – различна (4 слева и 2 справа).
Отсюда, в частности, следует, что если среди и реагентов, и продуктов отсутствуют газообразные вещества, то изменение давления никак не повлияет на текущее состояние равновесия. Например, давление никак не повлияет на состояние равновесия реакции:
Если же слева и справа количество газообразных веществ различается, то повышение давления будет приводить к смещению равновесия в сторону той реакции, при протекании которой объем газов уменьшается, а понижение давления – в сторону той реакции, в результате которой объем газов увеличивается.
Влияние катализатора на химическое равновесие
Поскольку катализатор в равной мере ускоряет как прямую, так и обратную реакции, то его наличие или отсутствие никак не влияет на состояние равновесия.
Единственное, на что может повлиять катализатор, — это на скорость перехода системы из неравновесного состояния в равновесное.
Воздействие всех указанных выше факторов на химическое равновесие сведено ниже в таблицу-шпаргалку, в которую поначалу можно подглядывать при выполнении заданий на равновесия. Однако же пользоваться на экзамене ей не будет возможности, поэтому после разбора нескольких примеров с ее помощью, ее следует выучить и тренироваться решать задания на равновесия, уже не подглядывая в нее:
Обозначения: T – температура, p – давление, с – концентрация, ↑ — повышение, ↓ — понижение
T | ↑Т — равновесие смещается в сторону эндотермической реакции |
↓Т — равновесие смещается в сторону экзотермической реакции | |
p | ↑p — равновесие смещается в сторону реакции с меньшей суммой коэффициентов перед газообразными веществами |
↓p — равновесие смещается в сторону реакции с большей суммой коэффициентов перед газообразными веществами | |
c | ↑c(реагента) – равновесие смещается в сторону прямой реакции (вправо) |
↓c(реагента) – равновесие смещается в сторону обратной реакции (влево) | |
↑c(продукта) – равновесие смещается в сторону обратной реакции (влево) | |
↓c(продукта) – равновесие смещается в сторону прямой реакции (вправо) | |
Катализатор | На равновесие не влияет!!! |
Источник
Материалы портала onx.distant.ru
Понятие химического равновесия
Признаки химического равновесия
Принцип Ле Шателье
Влияние температуры на химическое равновесие
Влияние давления на химическое равновесие
Влияние концентрации на химическое равновесие
Константа химического равновесия
Примеры решения задач
Задачи для самостоятельного решения
Равновесным считается состояние системы, которое остается неизменным, причем это состояние не обусловлено действием каких-либо внешних сил. Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием. Такое равновесие называется еще подвижным или динамическим равновесием.
- Состояние системы остается неизменным во времени при сохранении внешних условий.
- Равновесие является динамическим, то есть обусловлено протеканием прямой и обратной реакции с одинаковыми скоростями.
- Любое внешнее воздействие вызывает изменение в равновесии системы; если внешнее воздействие снимается, то система снова возвращается в исходное состояние.
- К состоянию равновесия можно подойти с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.
- В состоянии равновесия энергия Гиббса достигает своего минимального значения.
Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шателье (принципом подвижного равновесия):
Если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.
Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.
Рассмотрим влияние различных факторов на химическое равновесие на примере реакции окисления NO:
2NO(г) + O2(г) → 2NO2(г); ΔHо298 = — 113,4 кДж/моль.
При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.
Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше по абсолютной величине энтальпия реакции ΔH, тем значительнее влияние температуры на состояние равновесия.
В рассматриваемой реакции синтеза оксида азота (IV) повышение температуры сместит равновесие в сторону исходных веществ.
Сжатие смещает равновесие в направлении процесса, который сопровождается уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону.
В рассматриваемом примере в левой части уравнения находится три объема, а в правой – два. Так как увеличение давления благоприятствует процессу, протекающему с уменьшением объема, то при повышении давления равновесие сместится вправо, т.е. в сторону продукта реакции – NO2. Уменьшение давления сместит равновесие в обратную сторону. Следует обратить внимание на то, что, если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны, то изменение давления не оказывает влияния на положение равновесия.
Для рассматриваемой реакции введение в равновесную систему дополнительных количеств NO или O2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NO2. Увеличение концентрации NO2 смещает равновесие в сторону исходных веществ.
Катализатор одинаково ускоряет как прямую, так и обратную реакции и поэтому не влияет на смещение химического равновесия.
При введении в равновесную систему (при Р = const) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Поскольку рассматриваемый процесс окисления NO идет с уменьшением объема, то при добавлении инертного газа равновесие сместится в сторону исходных веществ.
Для химической реакции:
2NO(г) + O2(г) → 2NO2(г)
константа химической реакции Кс есть отношение:
Кс = [NO2]2/([NO]2 · [O2]) (1)
В этом уравнении в квадратных скобках – концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, т.е. равновесные концентрации веществ.
Константа химического равновесия связана с изменением энергии Гиббса уравнением:
ΔGTо = – RTlnK (2)
Задача 1. При некоторой температуре равновесные концентрации в системе 2CO (г) + O2 (г)→2CO2 (г) составляли: [CO] = 0,2 моль/л, [O2] = 0,32 моль/л, [CO2] = 0,16 моль/л. Определите константу равновесия при этой температуре и исходные концентрации CO и O2, если исходная смесь не содержала СО2.
Решение.
2CO(г) + O2(г) →2CO2(г)
Вещество | CO | O2 | CO2 |
Сисходн, моль/л | 0,52 | 0,48 | |
Спрореагир,моль/л | 0,32 | 0,16 | 0,16 |
Сравн, моль/л | 0,2 | 0,32 | 0,16 |
Во второй строке под Спрореагир понимается концентрация прореагировавших исходных веществ и концентрация образующегося CO2, причем, Сисходн= Спрореагир + Сравн.
Задача 2. Используя справочные данные, рассчитайте константу равновесия процесса
3 H2 (г) + N2 (г) →2 NH3 (г) при 298 К.
Решение.
ΔG298о = 2·(- 16,71) кДж = -33,42·103 Дж.
ΔGTо = — RTlnK.
lnK = 33,42·103/(8,314× 298) = 13,489. K = 7,21× 105.
Задача 3. Определите равновесную концентрацию HI в системе
H2(г) + I2(г) →2HI(г),
если при некоторой температуре константа равновесия равна 4, а исходные концентрации H2 , I2 и HI равны, соответственно, 1, 2 и 0 моль/л.
Решение. Пусть к некоторому моменту времени прореагировало x моль/л H2.
Вещество | H2 | I2 | HI |
сисходн., моль/л | 1 | 2 | |
спрореагир., моль/л | x | x | 2x |
cравн., моль/л | 1-x | 2-x | 2x |
Тогда, К = (2х)2/((1-х)(2-х))
Решая это уравнение, получаем x = 0,67.
Значит, равновесная концентрация HI равна 2× 0,67 = 1,34 моль/л.
Задача 4. Используя справочные данные, определите температуру, при которой константа равновесия процесса: H2(г) + HCOH(г) →CH3OH(г) становится равной 1. Принять, что ΔНоТ » ΔНо298, а ΔSоT » ΔSо298.
Решение.
Если К = 1, то ΔGоT = — RTlnK = 0;
ΔGоT = ΔНо298 — ТΔ Sо298 .
ΔНо298 = -202 – (- 115,9) = -86,1 кДж = — 86,1× 103 Дж;
ΔSо298 = 239,7 – 218,7 – 130,52 = -109,52 Дж/К;
0 = — 86100 — Т·(-109,52)
Т = 786,15К
Задача 5. Для реакции SO2(Г) + Cl2(Г) →SO2Cl2(Г) при некоторой температуре константа равновесия равна 4. Определите равновесную концентрацию SO2Cl2, если исходные концентрации SO2, Cl2 и SO2Cl2 равны 2, 2 и 1 моль/л соответственно.
Решение. Пусть к некоторому моменту времени прореагировало x моль/л SO2.
SO2(г) + Cl2(г) →SO2Cl2(г)
Вещество | SO2 | Cl2 | SO2Cl2 |
cисходн., моль/л | 2 | 2 | 1 |
cпрореагир., моль/л | x | x | х |
cравн., моль/л | 2-x | 2-x | x + 1 |
Тогда получаем:
(х + 1)/(2 — х)2 = 4
Решая это уравнение, находим: x1 = 3 и x2 = 1,25. Но x1 = 3 не удовлетворяет условию задачи.
Следовательно, [SO2Cl2] = 1,25 + 1 = 2,25 моль/л.
1. В какой из приведенных реакций повышение давления сместит равновесие вправо? Ответ обоснуйте.
1) 2 NH3 (г) → 3H2 (г) + N2 (г)
2) ZnCO3 (к) → ZnO(к) + CO2 (г)
3) 2HBr (г) → H2 (г) + Br2 (ж)
4) CO2 (г) + C (графит) →2CO (г)
Так как увеличение давления благоприятствует процессу, протекающему с уменьшением количества |
2. При некоторой температуре равновесные концентрации в системе:
2HBr (г) →H2 (г) + Br2 (г)
составляли: [HBr] = 0,3 моль/л, [H2] = 0,6 моль/л, [Br2] = 0,6 моль/л. Определите константу равновесия и исходную концентрацию HBr.
3. Для реакции H2(г) + S(г) →H2S(г) при некоторой температуре константа равновесия равна 2. Определите равновесные концентрации H2 и S, если исходные концентрации H2, S и H2S равны, соответственно, 2, 3 и 0 моль/л.
4. Используя справочные данные, вычислите температуру, при которой константа равновесия процесса
CO2(г) + C(графит) →2CO(г)
становится равной 1. Примите, что ΔНоТ≈ΔНо298, а ΔSоT≈ΔSо298
5. Используя справочные данные, рассчитайте константу равновесия процесса:
С2Н4(г) →С2Н2(г) + Н2(г)при 298 К
6. Для реакции 2С3Н8(г) → н-С5Н12(г)+СН4(г) при температуре 1000 К константа равновесия равна 4. Определите равновесную концентрацию н-пентана, если исходная концентрация пропана равна 5 моль/л.
7. При температуре 500 К константа равновесия процесса:
СО2(г) + 3Н2(г) → СН3ОН(г) + Н2О(г)
равна 3,4·10-5. Вычислите Δ Gо500.
8. При температуре 800 К константа равновесия процесса н-С6Н14(г)+ 2С3Н6(г)+Н2(г) равна 8,71. Определите ΔGоf,800(С3Н6(г)), если ΔGоf,800(н-С6Н14(г)) = 305,77 кДж/моль.
9. Для реакции СО(г) + Cl2(г) →СO2Cl2(г) при некоторой температуре равновесная концентрация СO2Cl2(г) равна 1,2 моль/л. Определите константу равновесия данного процесса, если исходные концентрации СО(г) и Cl2(г) равны соответственно 2,0 и 1,8 моль/л.
10. При некоторой температуре равновесные концентрации в системе 2SО2(г) + О2(г) →2SO3(г) составляли: [SО2 ]=0,10 моль/л, [О2]=0,16 моль/л, [SО3]=0,08 моль/л. Вычислите константу равновесия и исходные концентрации SО2 и О2.
К=4,0; исходная концентрация SО2 составляет 0,18 моль/л; |
Источник