При какой температуре происходит распад воды

Предложенный способо основан на следующем:

  1. Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля.
  2. Температура воспламенения водорода от 580 до 590oC, разложение воды должно быть ниже порога зажигания водорода.
  3. Электронная связь между атомами водорода и кислорода при температуре 550oC еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам.
  4. Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550oC можно получить только в незамкнутом пространстве.
  5. Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов.

Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок.

Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб.

Первый вариант
Работа и устройство установки первого варианта (схема 1)

Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550oC. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с.

Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с.

Один литр воды содержит 124 л водорода и 622 л кислорода, в пересчете на калории составляет 329 ккал.

Перед пуском установки стартер разогревается от 800 до 1000oC /разогрев производится любым способом/.

Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550oC, свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами.

В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В. Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм.

Труба — электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока.

Выход водорода по отношению к кислороду 1:5.

Второй вариант
Работа и устройство установки по второму варианту (схема 2)

Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС/.

Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения — «пуск» и «работа».

Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1/ до 550oC. Теплообменник /То/ — труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения.

Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки.

Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, — образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле:

2H2 + O2 = 2H2O + тепло

В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС.

Читайте также:  При какой температуре могут закрыть школы

После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения «пуск» переводится в положение «работа», после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя.

Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины.

Недостаток силовых установок для ВЭС — это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1/, 227 котлов /К2/. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС, дешевой электрической энергии и тепле.

Третий вариант
3-й вариант силовой установки (схема 3)

Это точно такая же силовая установка, как и вторая.

Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м3/ч и воду на образование рабочего пара 1620 м3/ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550oC. Давление пара 250 ат. Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВт/ч.

Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м. Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА — 380 х 6000 В.

ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА

  1. Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.
  2. Небольшой расход воды при получении электроэнергии и тепла.
  3. Простота способа.
  4. Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.
  5. Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.
  6. Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.
  7. В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.
  8. Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.

Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения водорода и кислорода из пара воды, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 — 550oC, пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

Источник

Высокотемпературный электролиз (также известен как электролиз водяного пара) – технология производства водорода и/или угарного газа из воды и/или углекислого газа с побочным продуктом в виде кислорода.

КПД

С экономической точки зрения высокотемпературный электролиз гораздо эффективнее, чем традиционный электролиз при комнатной температуре, так как некоторая часть энергии подается в виде тепла, более дешевого по сравнению с электричеством, а также потому, что реакция электролиза гораздо продуктивнее протекает при высоких температурах. Фактически при 2500C электрический ток не требуется, потому что вода распадается на водород и кислород путем термолиза. Подобные температуры являются практически нецелесообразными; предлагаемые ВТЭ работают в диапазоне 100-850C.

Увеличение КПД высокотемпературного электролиза лучше всего произойдет за счет оценки количества используемого электричества, поступающего из теплового двигателя, а затем – учета количества тепловой энергии, нужной для производства одного килограмма водорода (141,86 МДж), как во время самого процесса электролиза, так и во время производства электричества. При 100C требуется 350 МДж тепловой энергии (КПД – 41 %). При 850C требуется 225 МДж тепловой энергии (КПД – 64 %).

Материалы

Крайне важен подбор материалов для электродов и электролита в твердом оксидном электролизном элементе. Один из вариантов – диоксид циркония, стабилизированный оксидом иттрия в качестве электролита, никель-керметовые электроды для водяного пара или водорода, и смесь оксидов лантана, стронция и кобальта для кислородных электродов.

Экономический потенциал

Даже с использованием этой технологии электролиз является откровенно невыгодным способом хранения энергии. Серьезные потери энергии при преобразовании происходят как во время процесса электролиза, так и во время преобразования полученного водорода обратно в энергию.

Читайте также:  Какие бактерии выживают при высокой температуре

При текущих ценах на углеводороды ВТЭ не может конкурировать с пиролизом углеводородов, как экономическим источником водорода.

ВТЭ представляет собой интерес, как гораздо более эффективный способ производства водорода, при условии использования безуглеродного топлива и стандартных схем хранения энергии. Это может стать экономически выгодным, если дешевые альтернативные источники тепловой энергии (сконцентрированная солнечная, ядерная, геотермальная) можно будет использовать в связке с альтернативными источниками электроэнергии (солнечная, ветряная, водная, ядерная).

Возможными источниками дешевой высокотемпературной тепловой энергии будут исключительно нехимические виды, в том числе – ядерные реакторы, коллекторы, собирающие солнечное тепло, и геотермальные источники. В лабораторных условиях высокотемпературный электролиз показал затраты в 108 кДж для производства одного грамма водорода. В коммерческих условиях он себя не проявлял. К 2030 году ожидается постройка первых коммерческих реакторов четвертого поколения.

Рынок производства водорода

При обеспечении дешевыми источниками тепла высокой температуры возможны и другие способы производства водорода. В частности, стоит обратить внимание на термохимический серно-йодный цикл. Термохимическое производство может быть эффективнее, чем ВТЭ из-за отсутствия потребности в тепловом двигателе. Однако промышленное термохимическое производство потребует новых передовых материалов, которые смогут выдерживать высокие температуру, давление и коррозию.

Рынок для водорода – велик (50 миллионов метрических тонн/год в 2004 году, стоимость – около 135 миллиардов долларов/год) и растет примерно на 10 % в год. Этот рынок связан с пиролизом углеводородов для получения водорода, что приводит к выбросам углекислого газа. Два главных потребителя – нефтеперерабатывающие заводы и производители удобрений (каждый из них получит примерно половину всего производства). Автомобили на водороде должны распространиться повсеместно, их потребление вырастет, что поможет увеличить потребность в водороде при приходе водородной энергетики.

Электролиз и термодинамика

Во время электролиза объем электроэнергии, который необходимо добавить, равен сумме изменения энергии Гиббса в реакции и потерь системы. Теоретически потери могут быть сколь угодно близки к нулю, поэтому максимальный термодинамический КПД любого электрохимического процесса равен 100%. На практике КПД равен полученной работе электричества, разделенному на изменение энергии Гиббса во время реакции.

В большинстве случаев, как и при обычном электролизе воды, потребляемая мощность больше, чем изменение теплосодержания в реакции, поэтому некоторое количество энергии высвобождается в виде сбросного тепла. В случае электролиза водяного пара на водород и кислород при высокой температуре верно обратное. Тепло поглощается из окружающей среды, и удельная теплота сгорания производимого водорода выше потребляемой мощности. В этом случае отношение КПД к потребляемой мощности, можно сказать, превышает 100%. Максимально возможный в теории КПД топливного элемента противоположен КПД при электролизе. Из этого следует невозможность создания вечного двигателя путем сочетания этих двух процессов.

Эксперимент «MARS ISRU»

Высокотемпературный электролиз с твердыми оксидными электролизными элементами также предлагался для производства кислорода на Марсе из атмосферного углекислого газа с использованием циркониевых электролизных устройств.

Источник

ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

8.4.1. Прямое разложение воды

Общеизвестно, что водяной пар при высоких температурах раз­лагается на водород и кислород Эти газы могут быть сепарированы с помощью соответствующей методики, например, при использовании палладиевого филь-

тра. Данная методика обсуждалась выше в параграфе об очистке водорода монооксида углерода СО. Хотя на первый взгляд этот способ получения во рода может показаться привлекательным, однако его практическая реализа” достаточно сложна.

Представим себе такой эксперимент. В цилиндрическом сосуде под п шнем находится 1 кмоль чистого водяного пара. Вес поршня создает в cocj постоянное давление, равное 1 атм. Пар в сосуде нагревают до температ> 3000 К. Указанные значения давления и температуры были выбраны произвс. но в качестве примера.

Если в сосуде находятся только молекулы Н20, то количество свобол энергии системы можно определить с помошью соответствующих таблиц TeD динамических свойств воды и водяного пара Однако на самом деле по край мере часть молекул водяного пара подвергается разложению на составляг ее химические элементы, т. е. водород и кислород:

Н2ОвН2До2,

поэтому полученная смесь, содержащая молекулы Н20 , Н2 и 02, будет хар-«. теризоваться другим значением свободной энергии.

Если бы все молекулы водяного пара диссоциировали, то в сосуде оказалась газовая смесь, содержащая 1 кмоль водорода и 0,5 кмоля кислорода. Количе^ свободной энергии этой газовой смеси при тех же значениях давления (1 а и температуры (3000 К) оказывается больше количества свободной энер чистого водяного пара. Отметим, что 1 кмоль водяного пара был преобразован 1 кмоль водорода и 0,5 кмоля кислорода, т. е. общее количество вещества те: составляет А’оГ)||( =1,5 кмоля. Таким образом, парциальное давление водорода б> равно 1/1,5 атм, а парциальное давление кислорода — 0.5/1,5 атм.

При любом реалистичном значении температуры диссоциация водяного п будет неполной. Обозначим долю продиссоциировавших молекул перемен F. Тогда количество водяного пара (кмоль), который не подвергся разложен будет равно (1 – F) (считаем, что в сосуде находился 1 кмоль водяного пара). К личество образовавшегося водорода (кмоль) будет равно F, а кислорода — F Получившаяся смесь будет имеет состав

(l-F)n20 + FH2 + ^F02.

Общее количество газовой смеси (кмоль)

л06щ = (і-Л+*’ + ^ = і + ^-

Парциальное давление каждого из компонентов газовой смеси, находящейся при давлении р, будет равно

L – F

1 + F /2Р 1 + F/2’

1 + F/2 + F/2’

F/2 _ F/2

Ро, ~ , . ^ Р –

+ F/2 X + F/2

Мы приняли, что полное давление смеси равно выбранному нами ранее зна чению р = 1 атм.

Читайте также:  При какой температуре на пляже

-850

Диссоци

і

ация воды при тел и атмосферном д н2о Н2 + 0

шературе

ІВЛЄНИИ

5 02

3000 к/

./

/

/

/

/

/

Миш» F= 0,

ум

/

48

I -890 к

РЗ

I

о

ч

о

ю

U -910

0,2 0,4 0,6 0,8

Доля диссоциированной воды F

Рис. 8.8. Зависимость свободной энергии смеси водяного пара, водорода и кислорода от мольной доли продиссоциировавшего водяного пара

Свободная энергия компонента смеси зависит от давления в соответствии соотношением

8i = 8i +RTnp( , (41)

гле g – — свободная энергия /-го компонента смеси в расчете на 1 киломоль ftp и давлении 1 атм (см. «Зависимость свободной энергии от температуры в гл. 7).

Зависимость свободной энергии смеси от F, определяемая уравнением (42 показана на рис. 8.8. Как видно из рисунка, свободная энергия смеси водя – го пара, кислорода и водорода при температуре 3000 К и давлении 1 атм го: минимум, если доля продиссоциировавших молекул водяного пара состав

14,8 %. В этой точке скорость обратной реакции н, + – СУ, -> Н-,0 равна ско

1 2 сти прямой реакции Н20 -» Н2 + — 02 , т. е. устанавливается равновесие.

Чтобы определить точку равновесия, необходимо найти значение F при [20]

тором СП11Х имеет минимум.

d Gmjy —$ —$ 1 —$

-^ = – Ян2о + Яи2 + 2^о2 +

тогда

Sh2o “ Sn2 ~ 2 go2

RT

/

Константа равновесия Кр зависит от температуры и от стехиометрических коэффициентов в уравнении химической реакции. Значение Кр для реакции

Н-0 -» Н2 + ^02 отличается от значения для реакции 2Н20 -» 2Н2 + 02 . При зтом константа равновесия не зависит от давления. Действительно, если обра­титься к формуле (48), то можно увидеть, что значения свободной энергии g* определены при давлении 1 атм и не зависят от давления в системе. Более того, г»ли водяной пар содержит примесь инертного газа, например аргона, то это тткже не изменит значения константы равновесия, так как значение g”Ar равно тлю1*.

Соотношение между константой равновесия Кр и долей продиссоциировав – гго водяного пара /’может быть получено, если выразить парциальные давле­ния компонентов смеси в функции от F, как это было сделано в формулах (38), 39) и (40). Отметим, что эти формулы справедливы только для частного случая, гда полное давление равно 1 атм. В общем случае, когда газовая смесь нахо – іся при некотором произвольном давлении р, парциальные давления можно ссчитать по следующим соотношениям:

(49)

(50)

(51)

Подставляя эти выражения в уравнение (47), получим

(52)

Как было указано выше, константа равновесия Кр от давления не завис Отсюда можно сделать вывод, что от давления должна зависеть величина Например, мы получили, что при температуре 3000 К и давлении 1 атм п диссоциирует 14,8 % водяного пара (F = 0,148 ). Если же повысить давление сосуде до 100 атм, доля продиссолиировавших молекул уменьшится до 3,4 Очевидно, что этот результат является следствием принципа ле Шателье. П протекании реакции

Н, +4о

0 20 40 60 80

Давление, атм

Рис. 8.10. Зависимость мольной продиссоциировавшего водяного пара давления при температуре 3000 К

с повышением давления равновесие смещается влево, так как количество про;. тов реакции (кмоль) справа больше, чем количество исходного вещества еле

Рис. 8.9. Зависимость мольной доли продиссоциировавшего водяного пара от температуры при атмосферном давлении

Как следует из приведенной выше информации, прямое термическое ра жение воды возможно только при очень высокой температуре. Как показано рис. 8.9, при температуре плавления палладия (1825 К) при атмосферном. лении только незначительная доля водяного пара подвергается диссоциа Это означает, что парциальное давление водорода, полученного термичсс- разложением воды, будет слишком низким для использования в практичес задачах.

Повышение давления водяного пара не исправит ситуацию, так как при резко уменьшается степень диссоциации (рис. 8.10).

Определение константы равновесия можно распространить на случай более сложных реакций. Так, например, для реакции

V-aaV-bb ^ V-ccVdd

ионстанта равновесия

к РалРвв Р Р» ‘

Константа равновесия может быть выражена через равновесный состав сле­зающим образом:

чДц

(55)

к = | р

р /У^с NUc і N –

J’C lyD V оощ

где А|і = juc + in -іл – Ц/j, a Nt — равновесные значения мольных долей ком­понентов смеси.

Значения константы равновесия для различных химических реакций можно найти в термодинамических таблицах. На рис. 8.11 показана зависимость конс­танты равновесия от величины 1 /Т для реакции Н20 <-> н2До2.

Р 20000 10000 667 500 400 333 286

Рис. 8.11. Зависимость константы равновесия реакции диссоциации от температуры

С помощью линейной регрессии данных, приведенных на рис. 8.11, получено соотношение для константы равновесия

Величина -246 МДж/кмоль — это значение энергии образования воды, усре ненное в интервале температуры от нуля до 3000 К. Приведенное соотноше является еще одним примером уравнения Больцмана.

Выше мы говорили о том, что газ, находящийся в цилиндриче­ском сосуде с поршнем, может совершать работу. Какова эта работа? Сила, действующая на поршень со стороны газа, равна рА, где А …

Подведем некоторое количество Q теплоты к газу, находящему- ■ : цилиндре с адиабатическими стенками и поршнем внутри, который может ■сремещаться без трения. Наличие адиабатических стенок означает, что тепло – р …

При изменении температуры некоторого фиксированного коли­чества газа будет меняться его внутренняя энергия. Если при этом объем газа остается постоянным (например, газ помещен в сосуд с жесткими стенками), то изменение его …

Источник