При какой температуре выделяются диоксины

Образование диоксинов.
Для образования диоксинов необходимо сочетание трех условий: наличие органического углерода, наличие хлорорганических соединений и температура выше 450°С. Такие процессы, как сжигание осадков сточных вод, муниципальных и других промышленных и бытовых отходов (например, изделия из ПВХ, целлюлозно-бумажная продукция и пластические массы) сопровождаются образованием экологически опасных количеств диоксинов.
При нагревании хлор- и бромсодержащих органических веществ диоксины образуются в интервале температур 500-1200°С, причем максимум их образования приходится на 600-800°С.
Из общего количества хлора, который имеется в ТКО, около 50% содержится в пластмассе, до 25% в целлюлозно-бумажной продукции, а остальное в резине и других материалах.
Снижение образования и разрушение диоксинов.
Основным мероприятием для подавления выделения диоксинов является уменьшение выбросов органического углерода, то есть обеспечение полного его выгорания, а также контроль уровня СО как основного показателя полноты сжигания и остаточной концентрации диоксинов.
Диоксины обладают высокой термостойкостью. Эффективное разложение этих веществ происходит только при температурах выше 1250°С и выдержке более 2 с. Их терморазложение при меньших температурах является обратимым процессом. При охлаждении дымовых газов до 200-450°С они синтезируются вновь.
Для исключения образования диоксинов в зонах максимальных температур газовые смеси должны находиться при температурах выше 1250°С не менее 2 с. В целях предотвращения образования вторичных диоксинов в зоне охлаждения отходящих газов установок по сжиганию время пребывания в интервале температур 200-450°С должно быть не более 1 с.
Из опыта мусоросжигания известно, что эмиссия диоксинов из дымовой трубы существенно связана с выбросами частиц пыли и углерода. На многих мусоросжигательных заводах газоочистка основана на практически полном поглощении диокинов из дымовых газов при пропускании их через фильтры с активированным углем или тканевыми фильтрами, способными эффективно выделять золу из газа.
Реальные возможности снижения диоксиновой опасности технологии термической переработки органических отходов:
1.Уменьшение в исходном сырье доз Cl- и Br-содержащих материалов, способствующих образованию диоксинов.
2. Минимизация образования доли золы дымовых газов и уменьшение золоуноса.
3. Обеспечение при сжигании ТКО наиболее полного их сгорания и применение дожигания отходящих газов.
4. Управление температурным режимом процесса переработки исходного сырья с нагревом образующихся продуктов, содержащих диоксины, выше 1250°С с выдержкой более 2 с.
5. Предотвращение повторного синтеза диокинов путем холодной “закалки” дымовых газов или летучих продуктов термической переработки.
6. Удаление и улавливание летучих соединений в замкнутом цикле химической очистки и переработки.
Современные методы термической переработки ТКО.
сжигание ТКО в печи с колосниковыми решетками (КР) или котлоагрегате на колосниковых решётках разных конструкций;
сжигание отходов в кипящем слое (КС) инертного материала (обычно песок определённой крупности);
сжигание в барботируемом расплаве;
сжигание-газификация отходов в плотном слое кускового материала без его принудительного перемешивания и перемещения;
высокотемпературное сжигание в плазме;
пиролиз отходов.
Сжигание ТКО в печах с колосниковыми решетками (процесс КР) ввиду сравнительно низких температур (600 – 900°С) практически не решает диоксиновой проблемы. Кроме того, при этом образуются вторичные (твёрдые несгоревшие) шлаки и пыли, которые требуют отдельной переработки или направляются на захоронение с последующими негативными последствиями для окружающей среды. Эти недостатки в определённой мере присущи и процессу КС, протекающему при несколько более высоких температурах. Здесь добавляется необходимость подготовки сырья к переработке с целью соблюдения гранулометрического состава.
Для разрушения диоксинов после печей КР и КС используются дополнительные дожигатели, работающие на жидком или газовом топливе. Согласно Нормативам Европейского Союза (НЕС) геометрия горячей зоны дожигателя должна обеспечить пребываете газов в зоне с температурой не ниже 850°С в течение не менее 2 секунд (правило 2 секунд) при концентрации кислорода не менее 6%.
При этом следует иметь в виду, что требование 2 секунд подразумевает, что концентрация диоксинов в отходящих газах должна быть приемлемой для их очистки до регламентируемых 0,1 нг/м3. Однако при этом не учитывается особое свойство диоксинов – способность к повторному синтезу в холодной зоне.
Реально снижают содержание диоксинов в отходящих газах только угольные фильтры, на которых диоксины необратимо связываются, а также специальные каталитические дожигатели. Именно в силу трудностей их улавливания очистные сооружения современных заводов стоят очень дорого.
Основным достоинством технологии термической переработки ТКО в барботируемом расплаве шлака, протекающем при температуре 1400-1600°С, является решение диоксиновой проблемы: уже на выходе из барботажного агрегата практически отсутствуют высокотоксичные соединения (диоксины, фураны, полиароматические углеводороды). К недостаткам процесса относятся необходимость сортировки и дробления отходов до определённых размеров и потребность в дорогостоящей системе очистки выходящего из печи синтез-газа, представляющего собой смесь окиси углерода и водорода.
Сжигание-газификация отходов в плотном слое кускового материала в шахтной печи (аналог доменной печи) совмещает процессы пиролиза и газификации. Температура газов в нижней части печи достигает 1600-1800°С и по мере движения вверх через стой материала снижается до 150-200°С. Соответственно материал по мере опускания нагревается и подвергается сначала сушке, затем пиролизу и в нижней части сгорает с образованием расплава металлов и шлака. В зоне высокотемпературного пиролиза имеются условия для синтеза диоксинов, хотя и в меньших количествах по сравнению с горением на колосниковых решетках и в кипящем слое.
Плазменная или плазмохимическая технология является высокотемпературной разновидностью технологии пиролиза (газификации). По этой технологии в реакционной камере осуществляется пиролизный процесс с образованием при высоких температурах (от 1300 до 2000°С) пиролизного газа, который дожигается в реакторе либо в специальной камере дожигания. Применение данной технологии для утилизации ТКО ограничивается требованиями специальной подготовки загружаемых отходов, высоким энергопотреблением, малой надежностью и трудностями очистки продуктов сгорания от тяжелых металлов.
В результате процессов сжигания в барботируемом расплаве, сжигания-газификации отходов в плотном слое кускового материала и высокотемпературного сжигания в плазме образуются горючие газы ( в основном окись углерода и водород), требующие дополнительного устройства их сжигания, а также узла улавливания летучей золы.
Пиролиз – термическая переработка отходов в герметичных пиролизных печах без доступа кислорода при температуре до 1000°С, имеет перед прямым сжиганием существенное преимущество: при таком процессе диоксинов образуется на несколько порядков меньше.
При проведении низкотемпературного пиролиза при температуре до 450-500°С полностью исключаются условия синтеза диоксинов.
Резюмируя вышеизложенное:
На ПВХ приходится только 50% диоксинов, образующихся при термической утилизации ТКО.
Диоксины образуются в интервале температур 500-1200°С, причем максимум их образования приходится на 600-800°С.
Геометрия горячей зоны камеры дожига должна обеспечить пребывание газов в зоне с температурой не ниже 850°С в течение не менее 2 секунд при концентрации кислорода не менее 6%.
Полное разложение диоксинов происходит только при температурах выше 1250°С и выдержке более 2 с. Их терморазложение при меньших температурах является обратимым процессом. При 200-450°С они синтезируются вновь.
Вероятность образования диоксинов при пиролизе ТКО ниже, чем при сжигании, ввиду отсутствия кислорода. Пиролиз при температуре до 450-500°С полностью исключает условия синтеза диоксинов.
Источник
Диоксин — синтетический яд. Он образуется при температурах от 250 до 800°С как побочный продукт многих технологических процессов, использующих хлор и углерод. Наибольшее количество диоксинов выбрасывают металлургические и бумажные предприятия, многие химические заводы, фабрики по выпуску пестицидов и все установки для сжигания отходов.
Опасен не только своей высокой токсичностью, но и способностью чрезвычайно долго сохраняться в окружающей среде, эффективно переноситься по цепям питания и тем самым длительно воздействовать на живые организмы. Кроме того, даже в относительно безвредных количествах диоксин сильно повышает активность специфических ферментов печени, которые разлагают некоторые вещества синтетического и природного происхождения; при этом в качестве побочного продукта распада выделяются опасные яды. При невысокой концентрации организм успевает выводить их без вреда для себя. Но даже небольшие дозы диоксина резко увеличивают выброс ядовитых веществ. Это может привести к отравлению относительно безвредными соединениями, которые в небольшой концентрации всегда присутствуют в пище, воде и воздухе, — пестицидами, бытовыми химическими соединениями и даже лекарствами.
Данные последних лет показали, что основная опасность диоксинов заключается не столько в острой токсичности, сколько в кумулятивности действия и отдаленных последствиях хронического отравления малыми дозами.
Они аккумулируются в тканях (в основном жировых) живых организмов, накапливаясь и поднимаясь вверх по цепи питания. На самом верху этой цепи находится человек, и около 90 % диоксинов поступает к нему с животной пищей. Стоит однажды попасть диоксину в организм человека и он остается там навсегда и начинает свое долговременное вредное воздействие.
Причина токсичности диоксинов заключается в способности этих веществ точно вписываться в рецепторы живых организмов и подавлять или изменять их жизненные функции.
Около 90–95% диоксинов поступает в организм человека при потреблении загрязненной пищи (в основном животной) и воды через желудочно-кишечный тракт, остальные 5–10% — с воздухом и пылью через лёгкие и кожу. Попадая в организм, эти вещества циркулируют в крови, откладываются в жировой ткани и липидах без исключения всех клеток организма.
Диоксины плохо растворяются в воде и немного лучше в органических растворителях, поэтому эти вещества чрезвычайно химически стойкими соединениями. Диоксины практически не разлагаются в окружающей среде десятки, а то и сотни лет, оставаясь неизменными под влиянием физических, химических и биологических факторов среды.
Отчет Управления по охране окружающей среды США за 1998 год показывает, что взрослые американцы, которые получают диоксины только с пищей, главным образом с мясом, рыбой и молочными продуктами, уже несут в себе в среднем дозу диоксина, близкую к критической (вызывающей заболевания). Она оценивается в 13 нанограммов диоксинов на килограмм веса тела (нг/кг; нанограмм — миллиардная доля грамма; нг/кг — одна весовая часть на триллион). Казалось бы, 13 нг/кг — совершенно мизерная величина, и в абсолютном значении так оно и есть. Однако по сравнению с количествами, вызывающими серьезные нарушения в организме, 13 нг/кг — серьезная угроза здоровью. При этом 5% американцев 2,5 миллиона человек) несут в себе диоксиновую нагрузку, вдвое превышающую среднюю.
В организме теплокровных диоксины первоначально попадают в жировые ткани, а затем перераспределяются, накапливаясь преимущественно в печени, меньше — в тимусе (железе внутренней секреции) и других органах, и выводятся с большим трудом.
Действие диоксинов на человека обусловлено их влиянием на рецепторы клеток, ответственных за работу гормональных систем. При этом возникают эндокринные и гормональные расстройства, изменяется содержание половых гормонов, гормонов щитовидной и поджелудочной желёз, что увеличивает риск развития сахарного диабета, нарушаются процессы полового созревания и развития плода. Дети отстают в развитии, их обучение затрудняется, у молодых людей появляются заболевания, свойственные старческому возрасту. В целом повышается вероятность бесплодия, самопроизвольного прерывания беременности, врождённых пороков и прочих аномалий. Изменяется также иммунный ответ, а значит, увеличивается восприимчивость организма к инфекциям, возрастает частота аллергических реакций, онкологических заболеваний.
При остром отравлении диоксином наблюдаются потеря аппетита, слабость, хроническая усталость, депрессия, катастрофическая потеря веса. Летальный исход может наступить через несколько дней и даже несколько десятков дней, в зависимости от дозы яда и скорости его поступления в организм. Правда, все это происходит при диоксиновой нагрузке от 96 до 3000 нг/кг — в 7 раз более высокой, чем у среднего жителя США. В крови рабочих-мужчин, подвергшихся влиянию диоксина, обнаружено уменьшение уровня тестостерона и других половых гормонов. Особенно тревожно то, что эти люди имели диоксиновую нагрузку, лишь в 1,3 раза превышающую среднюю.
Последствия попадания диоксина в организм. Молекулярный механизм воздействия диоксина. Легко растворяясь в жирах, диоксин беспрепятственно проникает в клетки сквозь цитоплазматическую мембрану. Там он накапливается в липидах либо связывается с различными молекулярными структурами клетки. Образовавшиеся комплексы внедряются в цепочки ДНК, активизируя тем самым целый каскад реакций, приводящих к нарушению обмена веществ, работы нервной системы, вызывая гормональные расстройства, изменения кожных покровов, ожирение. К наиболее тяжелым последствиям приводит активация гена цитохрома Р4501А1, фермента, косвенно способствующего генетическим мутациям клеток и развитию рака. Из-за высокой стабильности молекулы диоксина процесс активации генов может продолжаться очень длительное время, нанося непоправимый вред организму.
Диоксин попадает в организм по преимуществу с пищей. 95–97% диоксина мы получаем из мяса, рыбы, яиц и молочных продуктов. Особенно сильно диоксин накапливается в рыбе. Это связано с тем, что ТХДД — гидрофобное вещество, оно «боится» воды. Попав в водную среду, диоксин всячески стремится ее покинуть — например, проникая в организмы обитателей водоемов. В итоге содержание диоксина в рыбе может в сотни тысяч раз превышать его содержание в окружающей среде. Жители Швеции и Финляндии 63% диоксинов и 42% фуранов получают через рыбные продукты.
Не обладая генотоксическим действием, диоксины не поражают генетический материал клеток организмов непосредственно. Тем не менее, они особенно эффективно поражают именно генофонд аэробных популяций, поскольку именно они разрушают общий механизм защиты генофонда от воздействия внешней среды. Условия среды могут резко усилить мутагенное, эмбриотоксичное и тератогенное действие.
Еще одно воздействие генетического плана заключается в том, что диоксины разрушают механизм адаптации аэробных организмов к внешней среде. Как следствие, возрастает их чувствительность к различного рода стрессам и к многочисленным химическим веществам, являющимся постоянными спутниками организмов в современной цивилизации. Последний аспект практически является двусторонним: синергисты диоксинов усиливают их собственное токсическое действие, а диоксины, в свою очередь, провоцируют токсичность ряда нетоксичных веществ. Социальное следствие этой и предшествующих особенностей диоксиновых интоксикаций – последовательное и малоконтролируемое ухудшение генетического здоровья пораженных популяций.
Для токсического действия диоксинов характерен длительный период скрытого действия. Кроме того, признаки диоксиновой интоксикации очень многообразны и в значительной степени определяются, на первый взгляд, их совокупностью, а также отягощенной предрасположенностью организма к тому или иному заболеванию.
Полностью избежать контакта с диоксинами вероятнее всего не удастся никому. Общая загрязненность окружающей среды и продуктов питания не оставляет никому такого шанса. Однако уменьшить поступление ядовитых веществ в организм все же возможно. Соблюдая определённую «гигиену» есть надежда получить меньшие дозы диоксина.
Прежде всего, следует стараться снизить риск попадания диоксина в организм. Для этого нужно вести здоровый образ жизни, питаться органической, преимущественно растительной (растения накапливают меньше диоксинов, чем животные и рыба), экологически чистой — выращенной на чистых почвах, пищей. Жирные сорта рыбы особенно опасны, часто содержат в жире большое количество токсичных соединений. Также это связано с антропогенным загрязнением окружающей среды, а, следовательно, даже дорогая красная рыба может быть составом диоксинов.
Можно полностью перейти преимущественно на растительную пищу — в ней диоксинов намного меньше, потому что в растениях почти нет жиров. Не разлагают диоксин и другие способы приготовления мяса — жарка, запекание в духовке, не помогут в этом и пароварки, микроволновые печи, скороварки.
По той же причине не стоит покупать евро продукты, поступающие на российский рынок, куда может быть добавлен жир, яйца и даже молоко — это майонез, макароны, бульонные кубики, готовые супы, торты, мороженое, и т.п.
Пить необходимо только очищенную воду, ни в коем случае не пить кипяченую хлорированную воду (диоксины могут образовываться при кипячении хлорированной воды). При кипячении хлорированной воды, органические соединения вступают в реакцию с хлором (в мегаполисах в водопроводной воде обнаруживают более 240 соединений) и образует хлорорганические соединения, такие, как трихлорметан и диоксин (при попадании фенола в воду образуется диоксин). Во многих странах уже отказались от обеззараживания воды хлорированием.
Можно очищать воду фильтрами для очистки воды, но менять в нем картриджи нужно часто, чтобы вместо очищенной воды не получить массу бактерий из загрязненного фильтра. На сегодня существует такой современный материал — активированные углеродные волокна, превосходящие по качеству очистки активированный уголь. Волокна способны поглощать ионы тяжелых металлов и подавлять жизнедеятельность бактерий.
Также шунгит не хуже активированного угля обладает способностью очищать воду от многих органических веществ — в том числе тяжелых металлов
Благодаря организованной особым образом кристаллической решетке, в основе которой лежит углерод, шунгит имеет способность очищать воду и насыщать ее специфическим минеральным составом, придавая ей уникальные целебные качества.
Источник