При какой температуре железо становится хрупким

При какой температуре железо становится хрупким thumbnail

Как известно, не все металлы одинаковы, и температурное воздействие может менять их структуру по-разному. Но основная масса распространенных металлов приобретают пластичность при нагревании. Среди них: алюминий, железо, сталь, латунь и т.д. То есть, при воздействии температуры, они способны растягиваться, меняя свою структуру. В это время металл можно ковать, придавая ему любую форму по желанию мастера. Однако есть металлы, которые не обладают пластичностью при нагревании, и во время попытки их ковать, совершая удары, они могут просто трескаться и разрушаться. Среди них: цинк, серый чугун, сплав олова и бронзы, и др.

Поведение металлов при воздействии разных температур

Железо и сталь – самые популярные металлы, которые хорошо поддаются температурному воздействию и ковке. Однако, необходимо учитывать тот факт, что при воздействии разной температуры эти металлы и ведут себя по-разному. Например, если нагреть сталь до температуры чуть выше 900°С, то ковать ее будет 2,5 раза сложнее, нежели если нагреть металл до 1200 °С. Следовательно, чем меньше температура нагрева, тем сложнее ковать. Это логично. Но необходимо знать, что нагрев стали уже до 600 °С способствует изменению ее структуры и улучшается пластичность. Температуру регулируют в зависимости от вида работ, которые планируют проводить со сталью.

Интересный факт: при нагревании стали от комнатной температуры, например, от 15-20 градусов и до 600 °С процесс видоизменения металла происходит по-разному. На значении в 300 °С наступает первый предел прочности на растяжение, но в этот момент металл становится очень хрупким. И только после значения в 600 °С сталь можно начинать растягивать и ковать. Далее, чем выше поднимается температура, тем ниже падает прочность стали. При 1200°С-1300°С, в сравнении со сталью комнатной температуры, ее прочность падает в 30 раз.

Что касается цветных металлов и других сплавов, то температура плавления у них меньше, чем у стали, а значит и все значения уменьшатся. Например, алюминий становится в 30 раз менее прочным уже при нагревании до 600 °С. В таком состоянии их можно легко деформировать, не затрачивая при этом особых усилий.

Максимальная температура для снижения прочности металлолома

Если сталь нагревать сильнее, чем до 1300 °С, то начинается превращение металла в жидкую фазу. Для того, чтобы этого не случилось, на пунктах приема металлолома установлены специальные печи, с максимальной температурой 1400 °С. Если поднимать температуру выше этого значения, то сталь расплавится. Этого допустить нельзя, ведь при, так называемом, пережоге стали наблюдаются негативные реакции в следующей последовательности:

  • Кристаллы и зерна металла начинают оплавляться;
  • Проникновение кислорода в межкристаллическое пространство;
  • Образование окиси железа на гранях зерен;
  • Разрушение металла.

Все эти факторы приводят к порче материала и неисправному браку. Именно поэтому печь должна быть отрегулирована положенным образом, а металл должен находится в ней только определённое короткое время. Во избежание пережога.

Прием металлолома metprom-group.ru оснащен всей необходимой специализированной и современной техникой, как для транспортировки и погрузки лома, так и для его дальнейшей обработки. Также, компания предлагает услуги вывоза лома с территории заказчика и очень выгодные цены. Сдав ненужный лом, вы сможете не только подзаработать, но и дать металлу вторую жизнь, сэкономив, таким образом, ценные ресурсы.

Источник

МОРОЗ НИПОЧЕМ

Когда хотят подчеркнуть незаурядную силу, крепость или мощь, то прибегают к сравнению с железом, сталью. “Крепкий, как сталь”, “железная воля” – часто говорим мы, справедливо делая такие образные сопоставления – ведь прочность железа достаточно хорошо известна еще с древнейших времен.

Но беда в том, что железо не выдерживает сильных морозов, и уже при температуре 40 °С ниже нуля становится хрупким. А ведь на земном шаре встречаются и такие места, где температура достигает 70 °С холода, и это не только антарктический континент, но и вполне обитаемые земли – Якутия, Заполярье. Славится своими морозами и вся Сибирь. В Якутии, например, довольно часты морозы, превышающие 60 °С. При таких температурах резко возрастает число поломок транспорта, машин и механизмов, особенно землеройных.

Промерзший грунт с трудом поддается механическому воздействию и может легко вывести из строя машину, работающую даже при обычной температуре воздуха. Насколько же увеличивается число неисправностей, когда материал, из которого сделана машина, становится сам по себе хрупким, непрочным!

В условиях Крайнего Севера число повреждений техники в зимнее время по сравнению с летним увеличивается в три, а нередко и в десять раз. А ведь сейчас стоит задача все интенсивнее осваивать богатства Севера и Сибири. Значит, нужна особая техника, техника в “северном” исполнении – надежная и долговечная.

Металлурги разрабатывают специальные марки стали, экспериментируют, стараются “вылечить” железо от столь досадной хрупкости при низких температурах. Было замечено, что добавка циркония в значительной степени снижает хрупкость железа. Получена особая сталь для Севера, которая намноголучше обычной. Но все же и она не лишена тех недостатков, от которых свободна “легкая сталь” – титан.

Читайте также:  Какая температура воды в бассейне для детей

То, что так разрушает железо, – холод – титану нипочем. Большинство серийных титановых сплавов совершенно спокойно переносит температуру до минус 196 °С, некоторые свободно выдерживают температуру жидкого водорода (минус 253 °С), а учеными Института металлургии Академии наук СССР создан титановый сплав, который не разрушается даже в самой холодной жидкости мира ~ жидком гелии (температура минус 269 °С). Что такому хладостойкому материалу, как титан, 60-70 °С ниже нуля? Сущие пустяки.

Разработанные титановые сплавы предназначены для изготовления оборудования, работающего в районах Заполярья и Крайнего Севера. Детали экскаваторов, тракторов, бульдозеров, сделанные из таких сплавов, будут необычайно долговечными и по-настоящему надежными.

В северных нефтегазодобывающих районах нередко выходят из строя центробежные колеса магистральных газопроводов. Сделанные из титана, они станут безотказными.

Но холод далеко не всегда враг. Часто он крайне необходим. И холод научились получать искусственно: начиная с прошлого века стали создавать специальные устройства, вырабатывающие холод средь жаркого лета. Родилась холодильная техника. Мы хорошо знаем ее в быту: домашние холодильники – полноправные ее представители. Правда, это не те холодильники, в которых развиваются температуры в 100 °С и более ниже нуля, необходимые во многих областях техники, и в которых применяются титановые сплавы.

По данным Всесоюзного научно-исследовательского института холодильного машиностроения, применение титановых сплавов для производства аммиачных компрессоров холодильных установок позволит создать машину лишь с одним агрегатом вместо двух и даст около 70 тысяч рублей годовой экономии по каждой установке. Из титана целесообразно изготовлять емкости для хранения и транспортировки жидкого гелия, водорода, азота. Кстати, температура жидкого азота (минус 196 °С) в технике низких температур является граничной. Она отделяет холодильную технику от криогенной.

Источник

Между твердостью стали и ее хрупкостью есть прямая взаимосвязь. Чтобы разобраться, сначала следует уяснить для себя верную терминологию.

Мы говорим о твердости, когда сталь невозможно чем-либо поцарапать (разве только алмазом, с помощью которого мы и точим стальные ножи). Но этого качества недостаточно, если у ножа нет прочности – сталь с экстремально высоким показателем твердости может разбиться от легкого удара. Это и есть хрупкость.

Почему сталь становится хрупкой

Хрупкость возникает, во-первых, когда сталь перекалена: хотя она и приобретает высокую твердость, но при этом становится уязвима и может треснуть от удара.

Некоторые легирующие элементы, такие как хром или ванадий, опять-таки повышают твердость стали и снижают ее прочность.

Сама по себе любая сталь является сплавом железа с углеродом и некоторым количеством легирующих элементов, призванных улучшать свойства сплава. Если в железе преобладает углерод, мы называем сталь углеродистой; если в значительном количестве присутствуют легирующие присадки, мы называем ее легированной. А как же «нержавейка»?.. А нержавейка, которую обычно противопоставляют углеродистой стали, это и есть одна из разновидностей легированных большим количеством хрома сталей. Например, если в сплаве более 13 % такого легирующего элемента, как хром, она и будет называться коррозионностойкой.

Стали, применяемые для изготовления режущих инструментов, должны обладать высокой износостойкостью, прочностью и достаточной вязкостью. Поэтому для изготовления ножевой инструментальной легированной стали часто, кроме хрома, вводят дорогие легирующие элементы (марганец, ванадий, молибден).

Как упрочнить сталь

Химические способы

Добавление в состав стали легирующих элементов способно упрочнить сталь. Например, многие японские стали содержат до 8 % молибдена, и это существенно повышает не только их прочность, но и вязкость, что делает сплавы с ним очень ценными.

Еще один способ повысить прочность и износостойкость стали – это добавление в сплав марганца: он делает структуру более мелкозернистой и прочной. Кроме этого, такой сплав лучше поддается заточке – чем более мелкие зерна у его структуры, тем более тонкую режущую кромку можно будет вывести и даже довести ее до бритвенной остроты.

Механический способ

Теперь, когда мы определились с составом сплава, мы можем перейти и к самому важному способу увеличения прочности стали – ее отпуску. Сделаем небольшое пояснение по этапам работы со сталью, чтобы была ясна разница между закалкой и отпуском.

Отпуск после закалки возвращает стали прочность

Отпуск после закалки стали

После отжига и механической обработки заготовки сталь закаляется – подвергается нагреву до определенной температуры. Обычно называется цифра в 800 градусов, хотя для разных марок она, конечно, будет разной. При отсутствии оборудования оптимальная температура определяется по цвету, до которого раскаляется сталь при закалке: подходящим считается вишневый или алый цвет, иногда – желтый. Оттенки, близкие к белому, говорят о том, что температура перевалила за допустимую отметку и достигла как минимум 1 300 градусов. Если мы с определенной скоростью охладим нагретый под закалку сплав, то с ним можно работать – отпускать и повышать его прочность, а вот сплав, который перекалился, иногда нельзя спасти даже отпуском.

Заготовки из стали охлаждаются с заданной скоростью в различных охлаждающих средах: в растворе соли или масле. В чистой воде сталь охлаждать нельзя: скорость охлаждения будет слишком высока и на заготовке могут появиться трещины; соль, напротив, снижает скорость охлаждения, что добавляет клинку вязкости.

Читайте также:  При какой температуре надо стирать кроссовки

Теперь у нас есть очень твердая сталь, которую получится поцарапать только алмазом, а вот разбить мы ее сможем легко – у нее пока нет нужной прочности. Значит, нужно провести отпуск. Это практически та же закалка, только многократная и, что важно, имеющая куда более низкие температуры. Для изготовления ножей подходит низкотемпературный отпуск – до 250 градусов.

Охлаждается нож между подходами отпуска точно так же, как после закалки – в солевом растворе или масле.

Источник

Охрупчивание – это значительное снижение пластичности материала, что делает его хрупким . Охрупчивание используется для описания любых явлений, при которых окружающая среда ставит под угрозу механические характеристики подвергнутого нагрузке материала, такие как температура или состав окружающей среды. Это часто нежелательно, поскольку хрупкое разрушение происходит быстрее и может распространяться гораздо легче, чем вязкое разрушение, что приводит к полному выходу оборудования из строя. Различные материалы имеют разные механизмы охрупчивания, поэтому оно может проявляться по-разному, от медленного роста трещин до снижения пластичности и вязкости при растяжении.

Механизмы

Охрупчивание – это комплексный механизм, который до конца не изучен. Механизмы могут быть вызваны температурой, напряжениями, границами зерен или составом материала. Однако, изучая процесс охрупчивания, можно принять превентивные меры для смягчения последствий. Есть несколько способов изучить механизмы. Во время охрупчивания металла (ME) можно измерить скорость роста трещин. Компьютерное моделирование также можно использовать для выяснения механизмов, лежащих в основе охрупчивания. Это полезно для понимания водородного охрупчивания (HE), поскольку диффузию водорода через материалы можно смоделировать. Охладитель не играет роли в окончательном разрушении; он в основном отвечает за распространение трещин. Сначала должны зародиться трещины. Большинство механизмов охрупчивания могут вызывать трансгранулярные или межкристаллитные переломы. Для охрупчивания металлов восприимчивы только определенные комбинации металлов, напряжений и температур. Это контрастирует с коррозионным растрескиванием под напряжением, при котором практически любой металл может быть восприимчивым в правильных условиях окружающей среды. Однако этот механизм намного медленнее, чем механизм охрупчивания жидким металлом (LME), что позволяет предположить, что он направляет поток атомов как к трещине, так и от нее. Основным механизмом нейтронного охрупчивания являются столкновения внутри материала с побочными продуктами деления.

Охрупчивание металлов

Водородной хрупкости

Одним из наиболее обсуждаемых и вредных видов охрупчивания является водородное охрупчивание металлов. Есть несколько способов, которыми атомы водорода могут диффундировать в металлы, в том числе из окружающей среды или во время обработки (например, гальваника). Точный механизм, вызывающий водородное охрупчивание, до сих пор не определен, но многие теории предложены и все еще проходят проверку. Атомы водорода, вероятно, диффундируют к границам зерен металлов, что становится препятствием для движения дислокаций и создает напряжение вблизи атомов. Когда металл подвергается напряжению, напряжение концентрируется вблизи границ зерен из-за атомов водорода, позволяя трещине зародиться и распространяться по границам зерен, чтобы снять накопленное напряжение.

Есть много способов предотвратить или уменьшить влияние водородной хрупкости металлов. Один из наиболее традиционных способов – нанести покрытия вокруг металла, которые будут действовать как диффузионные барьеры, предотвращающие попадание водорода из окружающей среды в материал. Другой способ – добавить ловушки или поглотители в сплав, который проникает в атом водорода и образует другое соединение.

Радиационное охрупчивание

Радиационное охрупчивание, также известное как нейтронное охрупчивание, – это явление, более часто наблюдаемое в реакторах и ядерных установках, поскольку эти материалы постоянно подвергаются постоянному воздействию радиации. Когда нейтрон облучает металл, в материале образуются пустоты, что называется набуханием пустот. Если материал находится в состоянии ползучести (в условиях низкой скорости деформации и высоких температур), пустоты сливаются в пустоты, что снижает механическую прочность заготовки.

Низкотемпературное охрупчивание

При низких температурах некоторые металлы могут претерпевать пластично-хрупкий переход, что делает материал хрупким и может привести к катастрофическому разрушению во время эксплуатации. Эта температура обычно называется температурой вязко-хрупкого перехода или температурой охрупчивания. Исследования показали, что низкотемпературное охрупчивание и хрупкое разрушение происходит только при соблюдении следующих конкретных критериев:

  1. Напряжения достаточно, чтобы образовалась трещина.
  2. Напряжение в трещине превышает критическое значение, которое приведет к раскрытию трещины. (также известный как критерий Гриффита раскрытия трещин)
  3. Высокая устойчивость к перемещению вывиха.
  4. Должно быть небольшое вязкое сопротивление дислокации, чтобы трещина открылась.

Все металлы могут соответствовать критериям 1, 2, 4. Однако только ОЦК и некоторые металлы ГПУ удовлетворяют третьему условию, поскольку они имеют высокий барьер Пайерла и сильную энергию упругого взаимодействия дислокации и дефектов. Все металлы FCC и большинство HCP имеют низкий барьер Пайерла и слабую энергию упругого взаимодействия. Пластмассы и каучуки также демонстрируют такой же переход при низких температурах.

Исторически сложилось так, что существует множество случаев, когда люди эксплуатируют оборудование при низких температурах, что приводит к неожиданным, но также и катастрофическим сбоям. В Кливленде в 1944 году произошел разрыв стального цилиндрического резервуара со сжиженным природным газом, поскольку он имеет более низкую пластичность при рабочей температуре. Другой известный пример – неожиданный перелом 160 ледовых кораблей времен Второй мировой войны в зимние месяцы. Трещина образовалась посередине кораблей и распространилась насквозь, буквально разбив корабли пополам.

Читайте также:  При какой температуре проверяют компрессию в двигателе

Другие виды охрупчивания

  • Коррозионное растрескивание под напряжением (SCC) – это охрупчивание, вызванное воздействием водных коррозионных материалов. Он зависит как от агрессивной среды, так и от наличия растягивающего (не сжимающего) напряжения.
  • Сульфидное растрескивание под напряжением – это охрупчивание, вызванное абсорбцией сероводорода .
  • Адсорбционное охрупчивание – это охрупчивание, вызванное смачиванием.
  • Охрупчивание жидкими металлами (LME) – это охрупчивание, вызванное жидкими металлами.
  • Охрупчивание, вызванное металлом (MIE) – это охрупчивание, вызванное диффузией атомов металла, твердого или жидкого, в материал. Например, кадмиевое покрытие высокопрочной стали, которое изначально делалось для предотвращения коррозии.
  • Основным механизмом охрупчивания пластмасс является постепенная потеря пластификаторов , обычно в результате перегрева или старения.
  • Основным механизмом охрупчивания асфальта является окисление, которое наиболее сильно проявляется в более теплом климате. Охрупчивание асфальтового покрытия может привести к появлению различных форм растрескивания, включая продольные, поперечные и блочные (шестиугольные). Окисление асфальта связано с деградацией полимера , поскольку эти материалы имеют сходный химический состав.

Охрупчивание неорганических стекол и керамики

Механизмы охрупчивания аналогичны металлам. Хрупкость неорганического стекла может проявляться в виде статической усталости. Хрупкость стекол, таких как Pyrex, зависит от влажности. Скорость роста трещин линейно зависит от влажности, что свидетельствует о кинетической зависимости первого порядка. Важно отметить, что статическая усталость пирекса по этому механизму требует, чтобы растворение концентрировалось на вершине трещины. Если растворение будет равномерным по плоской поверхности трещины, вершина трещины будет притуплена. Такое притупление может фактически увеличить прочность материала на излом в 100 раз.

Поучительным примером может служить охрупчивание композитов SiC / оксид алюминия. Механизм этой системы заключается в первую очередь в диффузии кислорода в материал через трещины в матрице. Кислород достигает волокон SiC и образует силикат. Напряжение концентрируется вокруг новообразованного силиката, и прочность волокон снижается. В конечном итоге это приводит к разрушению при напряжениях, меньших, чем типичное предел прочности материала при растяжении.

Охрупчивание полимеров

Полимеры бывают самых разных составов, и это разнообразие химического состава приводит к широкому диапазону механизмов охрупчивания. Наиболее распространенные источники охрупчивания полимеров включают кислород в воздухе, воду в жидкой или парообразной форме, ультрафиолетовое излучение солнца, кислоты и органические растворители.

Один из способов, которыми эти источники изменяют механические свойства полимеров, – это разрыв цепи и сшивание цепи . Разрыв цепи происходит, когда атомные связи в основной цепи разрываются, поэтому окружающая среда с такими элементами, как солнечное излучение, приводит к этой форме охрупчивания. Разрыв цепи уменьшает длину полимерных цепей в материале, что приводит к снижению прочности. Сшивание цепей дает противоположный эффект. Увеличение количества поперечных связей (например, из-за окислительной среды) приводит к получению более прочного и менее пластичного материала.

Термическое окисление полиэтилена представляет собой качественный пример охрупчивания цепи при разрыве. Случайный разрыв цепи вызвал изменение от пластичного к хрупкому поведению, когда средняя молярная масса цепей упала ниже критического значения. Для полиэтиленовой системы охрупчивание происходило, когда средневзвешенная молярная масса упала ниже 90 кг / моль. Было высказано предположение, что причиной этого изменения было уменьшение запутывания и увеличение кристалличности. Пластичность полимеров обычно является результатом их аморфной структуры, поэтому увеличение кристалличности делает полимер более хрупким.

Охрупчивание силиконового каучука происходит из-за увеличения количества поперечных связей цепи. Когда силиконовый каучук подвергается воздействию воздуха при температурах выше 250 ° C (482 ° F), происходят окислительные реакции поперечного сшивания на боковых метильных группах вдоль основной цепи. Эти поперечные связи делают резину значительно менее пластичной.

Растрескивание под напряжением растворителем является важным механизмом охрупчивания полимера. Это происходит, когда жидкости или газы абсорбируются полимером, что в конечном итоге приводит к набуханию системы. Набухание полимера приводит к меньшему сдвиговому потоку и увеличению склонности к образованию трещин . Растрескивание под напряжением из-за органических растворителей обычно приводит к статической усталости из-за низкой подвижности жидкостей. Растрескивание под напряжением растворителя из-за газов с большей вероятностью приведет к большей склонности к образованию трещин.

Поликарбонат является хорошим примером растрескивания под действием растворителя. Было показано, что множество растворителей делают поликарбонат хрупким (например, бензол, толуол, ацетон) по аналогичному механизму. Растворитель диффундирует в массу, набухает полимер, вызывает кристаллизацию и в конечном итоге создает границы раздела между упорядоченными и неупорядоченными областями. Эти границы раздела создают пустоты и поля напряжений, которые могут распространяться по всему материалу при напряжениях, намного меньших, чем типичная прочность полимера на растяжение.

Смотрите также

  • Коррозионное растрескивание под напряжением

Рекомендации

Источник