Пвд какую температуру выдерживает

Сегодня человечество не может обойтись без искусственных материалов. Они обладают рядом уникальных качеств, доступны и значительно удешевляют производство. Одним из таких материалов выступает полиэтилен. Температура плавления, а также прочие его технические характеристики заслуживают подробного рассмотрения. Ведь это один из самых востребованных сегодня материалов. Более половины всего этилена, производимого мировой химической промышленностью, направляется для получения полиэтилена. Чтобы понимать, почему он так популярен сегодня, следует рассмотреть его характеристики.
Что собой представляет вещество
Структура молекулы полиэтилена достаточно простая. Она выглядит как цепочка, которая состоит из атомов углерода. К каждому из них присоединяются 2 молекулы водорода. В мире существует две модификации этого вещества. Они различны по структуре. Это отражается и на свойствах, которыми обладает полиэтилен (температура плавления и кипения, потребительские свойства). Объединяет их только происхождение. Обе модификации получают из этилена.
Первая разновидность полиэтилена состоит из линейных мономеров. Их степень полимеризации равна 5000 и больше. Вторая модификация имеет разветвления мономеров. Они состоят из атомов углерода (от 4 до 6).
Чтобы создать линейный полиэтилен, применяют специальные катализаторы. Процесс полимеризации идет при температуре до 150 °С.
Характеристики
Термопластичным полимером, который характеризуется непрозрачностью при толстом слое, предстает для нас полиэтилен. Температура плавления, технические особенности материала делают его популярным. Он кристаллизуется в диапазоне от -60 до -269 °С.
Основным его положительным качеством является отсутствие смачивания полиэтилена водой. В домашних условиях он не подвержен воздействию различных органических растворителей. Также он не вступает в реакцию при комнатной температуре с водными солевыми, кислотными и щелочными растворами.
При повышении температуры до 60 °С, материал становится уязвим для серной и азотной кислот. Применяя окислители для обработки поверхности полиэтилена, следует ожидать разрушения поверхностного слоя. Материал начинает смачиваться водой. Это качество необходимо для склеивания полиэтилена.
Способы полимеризации
В зависимости от способа полимеризации этилена, полиэтилен бывает 3 видов: низкого, высокого давления и линейный тип материала. Это определяет, какими качествами будет обладать полиэтилен. Температура плавления, технические свойства каждой разновидности различны. Поэтому их применяют практически в любой сфере человеческой деятельности.
Полиэтилен, изготовленный под высоким давлением, более мягкий. Его полимеризируют радикальным методом. Давление при это достигает 1-3 тыс. атм. Температура равна 180 °С. Кислород в этом случае участвует как инициатор.
Полиэтилен низкого давления изготавливают при помощи катализаторов Циглера-Натта. В этом процессе также принимает участие органический растворитель. Рабочее давление составляет не менее 5 атм., а температура превышает 80 °С.
Линейный (средний) полиэтилен является промежуточным материалом между рассмотренными разновидностями. Это касается его качеств и свойств. Его изготавливают при давлении 30-40 атм. При использовании металлоценовых катализаторов удается получить продукт усиленной прочности.
Причина различий свойств полиэтилена
Разветвленность структуры макромолекул определяет свойства, которыми обладает полиэтилен. Температура плавления, плотность зависят от вида цепи. Чем больше разветвлений она имеет, тем более эластичный материал с меньшими кристаллическими свойствами получается на выходе.
Такая особенность структуры затрудняет образование более плотной упаковки макромолекул, становится препятствием 100% уровня кристалличности. Материал также имеет атмосферную фазу. В ней содержатся недостаточно упорядоченные участки молекул. Способ производства определяет соотношение кристаллической и атмосферной фаз. Именно эта особенность влияет на свойства полиэтилена.
Поэтому пленки, которые производят под низким давлением, более проницаемые, чем их другие разновидности. Чем больше кристалличность (молекулярная масса), тем выше механические показатели. Поэтому в виде пленки материал прозрачен и эластичен. Но листы из полиэтилена будут жесткими и непрозрачными.
Воздействие температуры
Под воздействием окружающей среды меняются качества, которыми наделен полиэтилен. Температура плавления этого вещества также зависит от способа производства. В общем виде при нагреве полиэтилен проходит несколько стадий. Сначала он становится более мягким, эластичным. Он легко поддается деформации под воздействием механических влияний.
Температура хрупкости, при которой средний полиэтилен теряет свои прочностные характеристики, составляет 70 °С. При дальнейшем ее повышении вещество размягчается еще больше. Оно полностью теряет присущую ранее форму при нагреве 120 °С. В жидкую субстанцию он превращается при температуре 130 °С.
Помимо температуры нагрева, необходимо учитывать воздействие ультрафиолета. Если материал применяется для уличных изделий, необходимо выбирать более прочные разновидности. Иначе мягкий, эластичный полиэтилен после года эксплуатации под прямыми солнечными лучами станет твердым и хрупким. Даже цвет материала меняется со временем.
Полиэтилен низкого давления
У каждой разновидности материала существуют особенные качества. Это расширяет спектр применения, которым обладает полиэтилен. Температура плавления (высокая плотность) составляет 120-135 °С. У отдельных марок теплостойкость составляет 110 °С. Высокая молекулярная плотность способствует повышению тепловой и ударной стойкости.
Помимо перечисленных качеств, полиэтилен низкого давления менее подвержен химическим воздействиям. Однако излишняя плотность молекул при низких температурах делает материал хрупким, он становится проницаемым для паров, газов.
Эта разновидность материала обладает хорошими диэлектрическими характеристиками. Он биологически неактивен, но легко перерабатывается в промышленном производстве.
Полиэтилен высокого давления
К этой группе относят эластичный, легкий полиэтилен. Температура плавления, свойства кристаллизации не позволяют выполнять из него высокопрочные, устойчивые к нагревам изделия. В зависимости от марки может иметь разную плотность. Их температура плавления составляет от 60 до 90 °С.
Так же, как и предыдущий тип материала, полиэтилен высокого давления бывает более прочным, если молекулярная масса увеличивается. Он становится менее подверженным химическим, ультрафиолетовым влияниям. Но при этом снижается его способность выдерживать удары. На таком полиэтилене в сильные морозы появляются трещины, разрывы. Он становится проницаемым для паров и газов.
У такого материала также присутствуют хорошие диэлектрические качества. Он не проявляет стойкости к жирам, маслу. Зато этот материал способен сдерживать радиационные лучи. Биологически этот материал также инертен, но прост в переработке.
Применение полиэтилена низкого давления
Присущие материалу качества определяют область применения, которую имеет полиэтилен. Температура плавления (применение этого показателя обязательно при выборе каждого изделия) позволяет делать из такого вещества упаковку и тару. Чаще всего изготавливают контейнера выдувным формованием. Это могут быть емкости для косметики или духов, пищевая тара.
Канистры и контейнера из полиэтилена низкого давления применяют в автомобильной и химической промышленности, при изготовлении бочек и топливных баков.
Набирает оборотов производство упаковочных пленок из подобного материала. Его широко применяют при производстве труб, фитингов. Это дешевый и долговечный материал. Он способен вытеснить прочую конкурентную продукцию с рынка.
Применение полиэтилена высокого давления
Полиэтилен, температура плавления которого ниже, чем у предыдущей разновидности, применяется в производстве пленок для сельского хозяйства, пищевой промышленности и прочих технических целей. Его востребованность постоянно растет.
Различные пленки для сельскохозяйственных целей могут иметь дополнительную армировку, их цвет также различен. Их применяют в теплицах, на полях для повышения качества и объемов урожая.
Пищевые пленки, пакеты во всем мире потребляются с каждым годом все в больших масштабах. Этот вид материала вытеснил из основных рыночных сегментов продукцию из других материалов.
Структура потребления
Полиэтилен, температура плавления которого определяет область его применения, во всем мире пользуется большим спросом. Структура потребления материала довольно интересна. 60-70% полиэтилена используется для изготовления листов и пленок.
Также довольно большую часть в общем объеме производства занимают изделия, полученные литьем под давлением или при помощи экструзии. Более незначительно производство изоляции для электрических проводов, труб и фитингов. Также полиэтилен применяется для получения изделий путем выдувания и прочего.
В производстве листов и пленок практически всегда применяют полиэтилен высокого давления (низкой плотности). Они изготавливаются разными способами. Толщина пленок находится в пределах 0,03-0,3 мм, а листов – 1-6 мм.
Помимо упаковки, из такого материала могут производить мешки, сумки, облицовки для ящиков, коробки и прочую тару. Свойства, которыми должно обладать изделие, определяют способ производства полиэтилена. В конце производства каждому типу материала присваивается марочность. Она помогает подобрать правильную разновидность материала для любой отрасли.
Источник
Полиэтилен высокого давления (расшифровка ПВД или ПЭВД – аббревиатуры) – это термопластичный полимер, получаемый методом полимеризации углеводородного соединения «этилен» (этен) под действием высоких температур (до 1800), давления до 3000 атмосфер и с участием кислорода. Также может называться как полиэтилен низкой плотности (ПНП или ПЭНП), так как имеет сравнительно слабые внутримолекулярные связи и, следовательно, более низкую плотность, чем полимеры других видов. Также для его обозначения применяется сокращение LDPE – английский эквивалент ПЭНП.
Полиэтилен низкой плотности (LDPE) – Процесс его изготовления протекает при очень высоком давлении от 100 до 300 мПа и температуре 100–300 °С, поэтому обозначается так же, как полиэтилен высокого давления (ПЭВД).
Макромолекулы полиэтилена высокого давления (n1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена среднего давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена низкого давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкая кристалличность и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.
Особенности ПВД (ПНП)
Химические и физические характеристики
Полиэтилен высокого давления (ПВД) изготавливается в виде гранул ПВД. Имеет плотность 900-930 кг/м3, температуру плавления 100-115 0С и температуру хрупкости до -120 0С, а также малое водопоглощение (около 0,02 % за месяц) и высокую пластичность. Эти физико-химические характеристики ПВД как вещества объясняют следующие свойства изготовленных из него предметов и материалов:
- Мягкость и гибкость изделий из полиэтилена низкой плотности,
- Возможность создания из гранул ПВД особенно гладких и блестящих поверхностей,
- Устойчивость предметов из ПВД к механическим разрушениям путем разрыва и удара, а также к деформациям растяжения и сжатия,
- Высокую прочность ПВД (пэнп) при воздействии низких температур,
- Влаго- и воздухонепроницаемость ПЭНП -изделий,
- Устойчивость ПЭВД к воздействию света, в частности к солнечному излучению.
ВАЖНО! Использование полиэтилена высокого давления (ПВД) абсолютно безопасно как для человека, так и для состояния окружающей среды, так как он не выделяет никаких токсичных веществ. Именно поэтому ПЭВД может использоваться даже для контакта с продуктами питания и при изготовлении детских товаров.
Отличие ПВД от других полимеров
Полиэтилены (ПВД, ПНД и др.) – это материалы, которые изготавливаются из одного мономера, но могут быть различной плотности в зависимости от особенностей изготовления. Этот показатель сильно влияет на свойства полиэтилена: увеличение плотности ведет к повышению жесткости, твердости, прочности изделий и их химической стойкости. Но при этом падают другие показатели: ударопрочность, возможность растяжения при разрыве, проницаемость для жидкостей и газов. Так, ПВД имеет существенные отличия от других подобных полимеров:
- ПВД и ПНД. Полиэтилен высокого давления не зря называется еще и полиэтиленом низкой плотности (ПНП или ПЭНП). По сравнению с ним такие твердые полимеры, как ПНД (полиэтилен низкого давления), быстрее поддаются разрывам под действием удара, чаще ломаются на морозе и растрескиваются при увеличении нагрузки, хотя и обладают большей стойкостью к воздействию радиации, щелочей и кислот. Гранулы ПВД и изделия из них гораздо лучше переносят ультрафиолетовое излучение, а также имеют более красивую глянцевую поверхность.
- ПВД и ЛПНП.Другой полимер – ЛПНП (линейный полиэтилен), как и ПНД, имеет жесткую структуру, но по своим техническим характеристикам находится между ПВД и ПНД. Он более стоек к химически агрессивным средам, чем ПЭНП, и имеет большую устойчивость к проколу и растрескиванию, чем ПНД.
Показатели, характеризующие строение полимерной цепи различных видов полиэтилена, приведены в таблице.
Таблица. Показатели, характеризующие строение полимерной цепи различных видов полиэтилена
Показатель | ПЭВД | ПЭНД |
Общее число групп СН3 на 1000 атомов углерода: | 21,6 | 5 |
Число концевых групп СН3 на 1000 атомов углерода: | 4,5 | 2 |
Этильные ответвления | 14,4 | 1 |
Общее количество двойных связей на 1000 атомов углерода | 0,4—0,6 | 0,4—0,7 |
в том числе: | ||
винильных двойных связей (R-CH=CH2), % | 17 | 43 |
винилиденовых двойных связей , % | 71 | 32 |
транс-виниленовых двойных связей (R-CH=CH-R’), % | 12 | 25 |
Степень кристалличности, % | 50-65 | 75-85 |
Плотность, г/см3 | 0,91-0,93 | 0,95-0,96 |
Структура молекулы ПЭНП влияет на свойства иначе, чем на плотность. Одно из важнейших свойств полимеров – кристалличность. Большая длина полимерных цепей приводит к образованию некоторого количества переплетений, что препятствует формированию плотных кристаллических образований при охлаждении, и таким образом между кристаллитами возникают неупорядоченные области.
Участки, где цепи параллельны и плотно упакованы, в значительной степени кристалличны, в то время как неупорядоченные области являются аморфными. Кристаллические области известны как кристаллиты.
Когда расплав полимера медленно охлаждают, кристаллиты могут образовывать сферолиты, состоящие из сферически симметричных образований кристаллитов и аморфного полимера.
Молекулы укладываются одна на другую параллельно с образованием ламелей. Кристаллизация распространяется, когда другие молекулы выстраиваются в том же порядке и складываются. Сферолиты, упомянутые ранее, образуются из-за нерегулярностей в структуре молекулы, которые ведут к росту кристаллитов в нескольких направлениях. Наличие боковых ответвлений приводит к уменьшению возможности упорядоченного расположения и, таким образом, снижает кристалличность.
Кристалличность ПЭНП обычно колеблется в интервале 55-70 % (по сравнению с 75-90% ПЭВП).
Другим важным показателем, на который влияет разветвленность цепи, является температура размягчения. Тот факт, что цепи не могут приблизиться плотно друг к другу, означает, что силы притяжения между ними ослабевают и тепловая энергия, необходимая для их перемещения относительно друг друга, т. е. течения, уменьшаются.
Точка размягчения ПЭНП немного ниже точки кипения воды, поэтому этот материал не может быть использован для контакта с кипящей водой или паром при стерилизации.
Таблица. Физико-химические свойства ПЭВД при 20°
Параметр | Значение |
Плотность, г/см2 | 0,918-0,930 |
Разрушающее напряжение, кгс/см2 | |
при растяжении | 100-170 |
при статическом изгибе | 120-170 |
при срезе | 140-170 |
относительное удлинение при разрыве, % | 500-600 |
модуль упругости при изгибе, кгс/см2 | 1200-2600 |
предел текучести при растяжении, кгс/см2 | 90-160 |
относительное удлинение в начале течения, % | 15-20 |
твёрдость по Бринеллю, кгс/мм2 | 1,4-2,5 |
Виды полиэтиленов ПЭНП
Дополнительная обработка полиэтилена высокого давления дает качественно новые материалы, различающиеся по химическим и физическим свойствам. В частности, существуют модификации ПЭВД с улучшенной адгезией к краскам и другим материалам (напр., к металлу) и с пониженной горючестью. На данный момент различают полиэтилены:
- вспененный ПВД,
- сшитый ПВД,
- сополимеры полиэтилена низкой плотности (ПНП) с другими мономерами либо с полиэтиленом другого вида.
Основные группы марок полиэтилена и сополимеров этилена, выпускаемые на сегодняшний день:
Полиэтилен
HDPE – Полиэтилен высокой плотности (полиэтилен низкого давления)
LDPE – Полиэтилен низкой плотности (полиэтилен высокого давления)
LLDPE – Линейный полиэтилен низкой плотности
mLLDPE, MPE – Металлоценовый линейный полиэтилен низкой плотности
MDPE – Полиэтилен средней плотности
HMWPE, VHMWPE – Высокомолекулярный полиэтилен
UHMWPE – Сверхвысокомолекулярный полиэтилен
EPE – Вспенивающийся полиэтилен
PEC – Хлорированный полиэтилен
Cополимеры этилена
EAA – Сополимер этилена и акриловой кислоты
EBA, E/BA, EBAC – Сополимер этилена и бутилакрилата
EEA – Сополимер этилена и этилакрилата
EMA – Сополимер этилена и метилакрилата
EMAA – Сополимер этилена и метакриловой кислоты, Сополимер этилена и метилметилакрилата
EMMA – Сополимер этилена и метил метакриловой кислоты
EVA, E/VA, E/VAC, EVAC – Сополимер этилена и винилацетата
EVOH, EVAL, E/VAL – Сополимер этилена и винилового спирта
POP, POE – Полиолефиновые пластомеры
Ethylene terpolymer – Тройные сополимеры этилена
Таблица 1: Основные физико-механические свойства ПЭВД
Наименование показателя | Значение для ПЭВД |
Температура стеклования, °С | -25 |
Температура плавления, °С | 103-115 |
Температура хрупкости, °С | -45…-120 |
Температура размягчения по Вика, °С | 80-90 |
Температура длительной эксплуатации, °С | 50 |
Степень кристалличности,% | 50-65 |
Плотность, кг/м3 | 910-930 |
Показатель текучести расплава,г/10 мин | 0,2-20 |
Морозостойкость, °С | -70 |
Теплостойкость по Мартену, °С | — |
Верхний предел рабочих температур, °С | 60-70 |
Нижний предел рабочих температур, °С | -120…-45 |
Предел текучести при растяжении, МПа | 6,8-13,7 |
Разрушающее напряжение при растяжении, МПа | 7-16 |
Разрушающее напряжение при изгибе, МПа | 12-20 |
Разрушающее напряжение при сжатии, МПа | 12 |
Модуль упругости при растяжении, МПа | 147-245 |
Модуль упругости при изгибе, МПа | 118-225 |
Модуль упругости при сжатиии, МПа | — |
Относительное удлинение при разрыве, % | 150-1000 |
Твердость по Бринелю, МПа | 14-25 |
Ударная вязкость по Шарпи, кДЖ/м2 без надреза/с надрезом | Не разр./ не разр. |
Коэффициент терния по стали | 0,58 |
Объемное удельное электрическое сопротивление, Омм | (0,1-1)×1015 |
Поверхностное удельное электрическое сопротивление, Ом | 1014-1015 |
Водопоглощение за 24 часа при 23°С,% | 0,01 |
Удельная теплоемкость, кДж/(кгК) | 2,1-2,8 |
Коэффициент теплопроводности, Вт/(мК) | 0,2-0,36 |
Температурный коэффициент линейного расширения, град-1 | (22-55)×10-5 |
Коэффициент температуропроводности, м2/с | 1,4×10-7 |
Таблица 2: Торговые названия ПЭВД в различных странах
Торговое название ПЭВД | Страна |
| РФ |
| США |
| Великобритания |
| Япония |
| Италия |
Обозначение базовых марок полиэтилена высокого давления ПЭВД:
- первая цифра (1) – процесс полимеризации протекает при высоком давлении в трубчатых реакторах с применением инициаторов радикального типа;
- вторая и третья цифры – порядковый номер базовой марки;
- четвертая цифра– способ гомогенизации ( – без гомогенизации в расплаве;1 – гомогенизация в расплаве);
- пятая цифра – условная группа плотности (3 – 917–921 кг/м3; 4 – 922–926 кг/м3);
- последние три цифры(написанные через дефис) указывают десятикратное значение показателя текучести расплава.
Композиции на основе базовых марок полиэтиленов обозначаются иначе: название термопласта, первые три цифры показывают базовую марку (без расшифровки), а цифры после тире – номер рецептуры добавки, далее через запятую – цвет и рецептура окрашивания, сорт и стандарт.
ПЭВДперерабатываются всеми известными способами и применяются для изготовления технических изделий и товаров народного потребления.
Область примененияПЭВД
ПЭВД был впервые использован в электротехнической промышленности, главным образом в качестве изоляционного материала для подводных кабелей и позднее – для радаров. Кристалличность ПЭВД обычно колеблется в интервале 55-70 % (по сравнению с 75-90% ПЭНД).
Сферами применения ПЭВД являются:
– экструзия пленок;
– производство кабеля;
– литье пластмасс под давлением;
– производство выдувных изделий.
Применение ПЭВД
Области применения ПЭВД зависят от:
- марок полимеров,
- способа стабилизации
- введенных добавок.
Области применения, способы и параметры переработки представлены в табл.3
Благодаря удачному набору химических и физических свойств, гранулы ПВД находят применение в изготовлении:
- пленок ПЭНП, открытых и в виде рукава ПВД для мешков и пакетов,
- пластмасс ПЭНП путем литья под действием давления (полимерные трубы, технические детали и др.),
- выдувных изделий (бутылки, канистры и т.п.),
- теплоизоляционных материалов из вспененного пэнп,
- электроизоляционных материалов (оболочки кабелей и пр.),
- термоклея ПВД в виде порошка, приготовленного дроблением гранул ПВД.
ИНТЕРЕСНО! ПВД был первым полимером, который стал использоваться как изоляционный материал в электротехнической промышленности для изоляции подводных кабелей и позже – для радаров.
Получают полиэтилен методом радикальной полимеризации этилена в реакторах трубчатого и автоклавного типов при давлении от 160 до 210 МПа в соответствии сГОСТ 16336–93.
На предприятии Полимирпроизводят:
базовые марки ПЭВД:
10204-003;
10803-020;
16204-020;
15803-020;
11503-070;
17703-010;
и композиции на их основе:
для кабельной промышленности(107-01К, 102-01К, 107-02К, 102-02К, 107-10К, 102-10К, 107-61К);
пленочные(162-132, 175-132, 175-209, 175-353, 177-353, 108 черный 901, 158 черный 901);
трубные(полиэтилен 102-14).
Таблица 3: Характерные свойства, области применения и способы переработки ПЭВД
Характерные свойства | Ограничения | Рекомендации по применению и способам переработки |
Температура эксплуатации без нагрузки до 60 °С, гибкий (в т.ч. при низких температурах), эластичный, высокая ударная прочность, морозостойкость до −(40–120)°С. Небольшой предел текучести при растяжении. Хорошие электроизоляционные свойства. Стойкость к агрессивным средам, незначительное влагопоглощение. Повышенная радиационная стойкость. Допущен для контакта с пищевыми продуктами и для деталей медицинского назначения. Хорошо окрашивается в массе. Гранулы размером (2–4)8 мм имеют насыпную плотность от 500 до 550 кг/м3 | Не стоек к жирам, маслам, ультрафиолету. Невысокие температуры эксплуатации. Низкие механические показатели, не огнестойкий, за исключением специальных композиций. Снижение химической стойкости при напряженном состоянии. Значительное снижение механических свойств при повышении температуры до 60° С. Большая деформация под нагрузкой. Большой разброс размеров изделий | Трубы, пленки, листы, тара, профили, емкости, электроизоляционные и антифрикционные покрытия для защиты от коррозии, крупногабаритные конструкции, изоляция кабеля. Литье под давлением, экструзия, прессование, сварка и др. |
Параметры переработки ПЭВД |
Литье под давлением:
экструзия в напорные трубы:
экструзия в безнапорные трубы и профильные изделия:
прессование:
Условия предварительной сушки до влажности ≤0,04%: при атмосферном давлении и температуре (75 ± 5) °С в течение 0,5–1 часа с толщиной слоя 1–3 см |
Области применения и основные характеристики базовых марок ПЭВД и композиций на их основе приведены в таблице 4 и таблице 5, соответственно.
Таблица 4: Назначение базовых марок ПЭВД
Марка ПЭВД | Назначение |
| Для изготовления напорных труб, фитингов, формования выдувных изделий большой вместимости, для пленок и пленочных изделий общего назначения |
| Для изготовления профильно-погонажных изделий, литьевых малогабаритных и крупногабаритных изделий, выдувных изделий, пленок общего назначения |
| Для получения малогабаритных и крупногабаритных изделий, выдувных изделий, термоусадочных, тонких пленок и пленок общего назначения |
| Для ламинирования бумаги и ткани методом экструзии, для покрытия изделий методом напыления, в качестве заливочного компаунда для заполнения деталей электрооборудования, для изготовления литьевых малогабаритных и крупногабаритных изделий |
| Для получения термоусадочных пленок и пленочных изделий общего назначения, литьевых, малогабаритных, а также профильно-погонажных изделий |
Таблица 5: Технические характеристики базовых марок Полиэтилена высокого давления (ПЭВД)
Показатели | Базовые марки ПЭВД | |||||
10204-003 | 10803-020 | 15803-020 | 16204-020 | 11503-070 | 17703-010 | |
Плотность, г/см3 | 0,9230 | 0,9185 | 0,9190 | 0,9230 | 0,9180 | 0,9190 |
Показатель текучести расплава,г/10мин | 0,3 | 2,0 | 2,0 | 2,0 | 7,0 | 1,0 |
Стойкость к растрескиванию,ч, не менее | 500 | 2 | — | — | — | — |
Предел текучести при растяжении, Мпа, не менее | 11,3 | 9,3 | 9,3 | 10,8 | 9,3 | 9,8 |
Прочность при разрыве,Мпа, не менее | 14,7 | 12,2 | 11,3 | 11,3 | 9,8 | 12,2 |
Относительное удлинение при разрыве,%, не менее | 600 | 550 | 600 | 600 | 450 | 600 |
Для сравнения в таблицах 6 и 7 представлены технические характеристики ПЭВД и его композиций по данным зарубежных производителей.
Таблица 6: Нормативные показатели качества ПЭВД алкатен и алатон для различных марок
Показатель | Алкатен | Алатон | |||||||
XDK10 | WIG11 | WNG14 | XNF35 | 31 | 25 | 34 | 16 | 37 | |
Показатель текучести расплава, г/10мин | 0,3 | 2,0 | 7,0 | 9,0 | 0,6 | 2,0 | 3,0 | 4,0 | 12,0 |
Плотность, кг/м3 | 923 | 919 | 918 | 929 | 930 | 931 | 930 | 923 | 930 |
Относительное удлинение при разрыве, % | 600 | 600 | 500 | 90 | 400 | 550 | 410 | 600 | 100 |
Предел текучести при растяжении, МПа | 12,0 | 11,0 | 10,0 | 13,9 | 14,7 | 11,5 | 11,5 | 11,2 | 10,6 |
Разрушающее напряжение при растяжении, МПа | 15,5 | 13,0 | 10,5 | 13,9 | 14,7 | 12,3 | 14,7 | 11,9 | — |
Модуль упругости при растяжении, МПа | 166,0 | 149,0 | — | 346,0 | — | 2460 | — | — | — |
Водоплоглощение за 24 часа,% | — | — | — | — | 0,01 | — | 0,01 | 0,015 | 0,01 |
Таблица 7: Нормативные показатели качестваПЭВД луполен и фертен для различных марок
Показатель | Луполен | Фертен | ||||||
1820Н | 6001L | 6001H | 6001F | ZD | Q | XX | LXX | |
Показатель текучести расплава, г/10мин | 1,4-1,8 | 4-6 | 1,2-1,7 | 0,7-1 | 0,4 | 4,5 | 20 | 70 |
Плотность, кг/м3 | 926-928 | 959-961 | 959-961 | 958-960 | — | — | — | — |
Предел текучести при растяжении, МПа | 8,5-9,0 | 26-28 | 26-28 | 26-28 | — | — | — | — |
Модуль упругости при растяжении, МПа | 1300 | 11000 | 11000 | 1100 | — | — | — | — |
Относительное удлинение при разрыве, % | — | — | — | — | 83 | 112 | 129 | 134 |
Разрушающее напряжение при растяжении, МПа | — | — | — | — | 12,5 | 9,9 | 8,4 | 7,1 |
Разрушающее напряжение при срезе, МПа | — | — | — | — | 15,2 | 12,0 | 10,2 | 8,4 |
Модуль упругости при изгибе, МПа | — | — | — | — | 149 | 119 | 104 | 92 |
Источник