В какой фазе находится вода при температуре

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ВОДЫ И ВОДЯНОГО ПАРА
Под термином “вода” будем понимать Н2О в любом из возможных ее фазовых состояний.
В природе вода м.б. в трех состояниях: тв.(лед, снег), ж. (вода), г.(пар).
Рассм-м воду без энергетич. взаимодействия с окр. ср., т.е. в равновесном состоянии.
У поверхности льда или жидкости всегда присутствует пар. Соприкасающиеся фазы находятся в т/д равновесии: быстрые мол-лы вылетают из жидкой фазы, преодолевая поверхностные силы, а из паровой фазы медленные молекулы переходят в ж. фазу.
В состоянии равновесия каждой Т соответствует определенное давление пара – полное (если над жидкостью присутствует только пар) или парциальное (если присутствует смесь пара с воздухом или другими газами).
Пар, находящийся в равновесном состоянии с ж. фазой, из которой он образовался – насыщенный, а соответствующая ему Т – Т насыщения, а давление – р насыщения.
Неравновесные состояния воды:
а) Пусть понижается давление пара над жидкостью ниже давления насыщения. В этом случае нарушается равновесие, происходит некомпенсированный переход вещества из жидкой фазы в газообразную через поверхность раздела фаз за счет наиболее быстрых молекул.
Процесс некомпенсированного перехода вещества из ж. фазы в г. – испарение.
Процесс некомпенсированного перехода вещества из твердой фазы в газовую называется сублимациейили возгонкой.
Интенсивность испарения или сублимации возрастает при интенсивном отводе образующегося пара. При этом понижается температура жидкой фазы за счет вылета из нее молекул с наибольшей энергией. Этого можно добиться и без понижения давления, просто обдувом потока воздуха.
б) Пусть идет подвод теплоты к жидкости, находящейся в открытом сосуде. При этом Т, а соответственно и р насыщенного пара над жидкостью растет и может достигнуть полного внешнего давления (Р=Рн).В случае, когда Р=Рн, у поверхности нагрева Т жидкости поднимается выше Т насыщенного пара при господствующем здесь давлении, т.е. создаются условия образования пара в толще жидкости.
Процесс перехода вещества из жидкой фазы в паровую непосредственно внутри жидкости называется кипением.
Процесс зарождения пузырьков пара в толще жидкости сложен. Для кипения воды необходимо наличие центров парообразования на поверхности подвода теплоты – углубления, выступы, неровности и т.п. У поверхности нагрева, при кипении, разность Т воды и насыщенного пара при господствующем здесь давлении зависит от интенсивности подвода теплоты и может достигать десятков градусов.
Действие сил поверхностного натяжения жидкости обусловливает перегрев жидкости на поверхности раздела фаз при ее кипении на 0,3-1,5 оС по отношению к температуре насыщенного пара над ней.
Любой процесс перехода вещества из жидкой фазы в паровую – парообразование.
Процесс, противоположный парообразованию, т.е. некомпенсированный переход вещества из паровой фазы в жидкую – конденсация.
При постоянном давлении пара конденсация происходит (как и кипение) при постоянной температуре и является результатом отвода теплоты от системы.
Процесс, противоположный сублимации, т.е. переход вещества из паровой фазы непосредственно в твердую – десублимация.
Жидкая фаза воды при температуре кипения называется насыщенной жидкостью.
Пар при температуре кипения (насыщения) называется сухим насыщенным паром.
Двухфазная смесь “ж+п” в состоянии насыщения – влажный насыщенный пар.
В т/д этот термин распространяется на двухфазные системы, в которых насыщенный пар может находиться над уровнем жидкости или представлять смесь пара с взвешенными в нем капельками жидкости.Для характеристики влажного насыщенного пара используется понятие степени сухостих, представляющее собой отношение массы сухого насыщенного пара,mс.н.п, к общей массе смеси,mсм = mс.н.п+ mж.с.н, его с жидкостью в состоянии насыщения:
. (1)
Отношение массы жидкой фазы воды в состоянии насыщения к массе смеси называется степень влажности(1-х):
. (2)
Подвод теплоты к влажному насыщенному пару при постоянном р приводит к переходу ж. фазы смеси в п. При этом Т смеси (насыщения) не м.б. повышена до тех пор, пока вся жидкость не будет превращена в пар. Дальнейший подвод теплоты только к паровой фазе в состоянии насыщения приводит к повышению Т пара.
Пар с температурой выше температуры насыщения при данном давлении называется перегретым паром. Разность температур перегретого пара t и насыщенного пара того же давления tнназывается степенью перегрева параDtп = t -tн.
С увеличением степени перегрева пара его объем растет, концентрация молекул уменьшается, по своим свойствам он приближается к газам.
6.2. Фазовые диаграммы Р,t-, Р,v- и T,s для Н2О
Для анализа различных т/д процессов изменения состояния H2O широкое применение находят фазовые диаграммы.
Представим, что в цилиндре под поршнем, создающим постоянное р (рис.1), находится лед при начальной Т t1. Ч/з стенки цилиндра подводится теплота Q, процесс нагрева и фазовых переходов H2О показан в t,Q- диаграмме. Лед нагревается до Т плавления tпл (пр-с 1а), после чего лед плавится при постоянной Т и превращается в воду (аа’), далее вода нагревается до Т кипения (насыщения) tн (a’в), затем идет процесс испарения и превращения воды в сухой насыщ. пар (вв’), далее идет процесс перегрева пара (в’2) до Т t2.
Тот же процесс (12) получения перегретого пара из льда при постоянном давлении представлен на рис. 2 в системе Р,t. Т. к. процессы плавления (aa’) и парообразования (вв’) протекают при постоянной Т, на рис. 2 они концентрируются в точки а и в. В Р,t- диаграмме эти точки характеризуют термодинамическое равновесие двухфазных смесей. Геометрически место этих точек при различных давлениях и соответствующих им температурах представляет собой линии фазовых переходов.
АВ – линия фазового перехода твердой и жидкой фаз. Это аномальная линия, т.к. для большинства веществ с ростом давления растет и Т плавления, для воды наоборот.
АК – линия фазового перехода жидкой и паровой фаз, с повышением давления растет и Т кипения (насыщения) воды и пара.
С понижением р разность температур плавления и насыщения уменьшается, и в точке А указанные кривые сходятся .Эта точка А называется тройной точкой воды; ее координаты определяют физические условия (Ро иtо), при которых все три фазы вещества находятся в термодинамическом равновесии и могут существовать одновременно. Параметры тройной точки воды:tо=0,01 оС или 273,16 К и Ро=611,2 Па.
АС, ниже тройной точки, – линия фазового перехода и равновесия тв. и п. фаз, т.е. линия сублимации и десублимации. Так, при р, соответствующем процессу de, при нагреве твердой фазы (de) в точке с происходит переход твердой фазы в пар – сублимация, при охлаждении (еd) в точке c происходит переход пара в тв. фазу – десублимация. В обоих случаях переход минует жидкую фазу.
Кривыми фазовых переходов все поле Р,t- диаграммы делится на три зоны:
левее ВАС – зона твердого состояния (лед),
между ВА и КА – зона жидкости,
правее КАС – зона перегретого пара.
При этом линия АК вверху заканчивается точкой К, определяемой критическими параметрами. При давлениях выше критического видимого фазового перехода жидкости в пар нет.
Вода относится к веществам, имеющим несколько модификаций кристаллических фаз. В настоящее время известно 6 модификаций водяного льда. При давлениях, достигаемых в обычных технических устройствах, получается только одна модификация льда. Все остальные модификации могут быть получены при высоких давлениях.
Для веществ с нормальной закономерностью изменения объема(к ним относятся большинство веществ, встречающихся в природе, но вода к ним не относится) при постоянном давлении с увеличением температуры объем непрерывно увеличивается. У таких веществ при Р=const объем твердой фазы меньше объема жидкости, а объем жидкости меньше объема пара.
В соответствии с этой закономерностью можно построить фазовую диаграмму Р,v для нормального вещества(рис.3).
DС – твердая фаза при температуре плавления; АЕ – жидкость при температуре плавления; АК – жидкость при температуре насыщения (кипения, x=0); КL – сухой насыщенный пар (x=1), ВС – твердая фаза при температуре сублимации.
Левее линии СВD – область твердого состояния; между линиями ВД и АЕ – твердая фаза + жидкость; между линиями АЕ и АК – область жидкости; между линиями АК и КN – жидкость + пар; между линиями СВ, ВN и NL – твердая фаза + пар; правее линии КL – область паровой фазы. Горизонталь ВАN соответствует тройной точке нормального вещества в Р,t- диаграмме.
Аналогично диаграмме Р,v выглядит фазовая диаграмма T,s для нормального вещества (рис.4). Здесь левее линии DВС – твердая фаза, между линиями ВD и АЕ – двухфазное состояние, твердая фаза+жидкость, между АЕ и АК – жидкая фаза, между ВС и NL – двухфазное состояние, твердая фаза+пар; правее линии КL – перегретый пар; между АК и КN – двухфазное состояние жидкость+пар в состоянии насыщения (влажный насыщенный пар).
Эти фазовые диаграммы не могут быть распространены целиком на воду. Вода – аномальное вещество,при изобарном переходе ее из жидкого состояния в твердое удельный объем воды увеличивается (лед плавает на поверхности воды). Поэтому в Р,v- диаграмме область двухфазного состояния лед+жидкость частично накладывается на зону влажного пара и жидкости.
В результате фазовая диаграмма Р,v для воды имеет вид, представленный на рис. 5, а. Здесь левее линии СВD находится твердая фаза воды, левее линии АК – жидкая фаза воды, между линиями ЕАВD – двухфазное состояние жидкость+лед, между линиями СВNL – двухфазное состояние лед+пар, выше линии КL – перегретый пар. Благодаря аномальным свойствам воды происходит наложение областей различных фазовых состояний воды в Р,v- диаграмме: область двухфазного состояния лед+жидкость ЕАВD накладывается на область жидкости ЕАМD и на область двухфазного состояния жидкость+пар АМВА, кроме этого идет наложение и на область твердой фазы левее линии ВD. Необходимо отметить, что изображение этих областей на рис. 6.7, а выполнено для большей наглядности укрупнено, без соблюдения масштаба. В действительности объемы жидкости и льда намного меньше, чем в точках А и В, в то же время с уменьшением температуры и увеличением давления происходит уменьшение объемов этих фазовых состояний, т.е. левее линии АЕ область жидкости увеличивается по мере возрастания давления, а твердая фаза, находясь левее линии АЕ, не может располагаться левее области жидкой фазы воды при отрицательных температурах.
Для иллюстрации наложения друг на друга различных фаз воды в Р,v- диаграмме на рис. 5, а, б изображены две изотермы (пунктирные линии), имеющие температуру больше (t>tо) и меньше (t<tо) температуры тройной точки воды tо.
Изотерма 1234 имеет температуру меньше 0 оС и проходит в Р,v- диаграмме на линии 12 в области жидкости, на линии 22′ – в области двухфазного состояния жидкость+лед, на линии 2’3 – в области льда, на линии 33′ – в области двухфазного состояния лед+пар, на линии 3’4 – в области перегретого пара.
Изотерма 567 имеет температуру больше 0 оС и проходит в Р,v- диаграмме на линии 56 в области жидкости, на линии 66′ – в области двухфазного состояния жидкость+пар, на линии 6’7 – в области перегретого пара.
Точки пересечения этих изотерм в Р,v- диаграмме свидетельствуют о наложении различных фазовых состояний воды друг на друга. В данных точках эти фазовые состояния имеют одинаковые удельные объемы при одинаковых значениях давлений и различных значениях температур. Так жидкость на изотерме 56 имеет одинаковый удельный объем с жидкостью+лед с одной из точек на изотерме 22′, а лед на изотерме 2’3 имеет одинаковый объем с жидкостью+пар с одной из точек на изотерме 66′.
При построении фазовой T,s- диаграммы воды начало отсчета энтропии выбирают при параметрах тройной точки воды (tо=0,01 оС и Ро=611,2 Па) для жидкости в состоянии насыщения (х=0).
В дальнейшем ввиду малого отличия температуры тройной точки воды от 0 оС будет использоваться в основном значение нуля градусов Цельсия (под ним подразумевается температура тройной точки воды).
Источник
Эта диаграмма показана на рис. 6.5. Области фазовой диаграммы, ограниченные кривыми, соответствуют тем условиям (температурам и давлениям), при которых устойчива только одна фаза вещества. Например, при любых значениях температуры и давления, которые соответствуют точкам диаграммы, ограниченным кривыми ВТ и ТС, вода существует в жидком состоянии. При любых температуре и давлении, соответствующих точкам диаграммы, которые расположены ниже кривых AT и ТС, вода существует в парообразном состоянии.
Кривые фазовой диаграммы соответствуют условиям, при которых какие-либо две фазы находятся в равновесии друг с другом. Например, при температурах и давлениях, соответствующих точкам кривой ТС, вода и ее пар находятся в равновесии. Это и есть кривая давления пара воды (см. рис. 3.13). В точке Л” на этой кривой жидкая вода и пар находятся в равновесии при температуре 373 К (100 0C) и давлении 1 атм (101,325 кПа); точка X представляет собой точку кипения воды при давлении 1 атм.
Кривая AT является кривой давления пара льда; такую кривую обычно называют кривой сублимации.
Кривая ВТ представляет собой кривую плавления. Она показывает, как давление влияет на температуру плавления льда: если давление возрастает, температура плавления немного уменьшается. Такая зависимость температуры плавления от давления встречается редко. Обычно возрастание давления благоприятствует образованию твердого вещества, как мы убедимся на примере рассматриваемой далее фазовой диаграммы диоксида углерода. В случае воды повышение давления приводит к разрушению водородных связей, которые в кристалле льда связывают между собой молекулы воды, заставляя их образовывать громоздкую структуру. В результате разрушения водородных связей происходит образование более плотной жидкой фазы (см. разд. 2.2).
В точке У на кривой ВТ лед находится в равновесии с водой при температуре 273 К (О 0C) и давлении 1 атм. Она представляет собой точку замерзания воды при давлении 1 атм.
Кривая ST указывает давление пара воды при температурах ниже ее точки замерзания. Поскольку вода в нормальных условиях не существует в виде жидкости при температурах ниже ее точки замерзания, каждая точка на этой кривой соответствует воде, находящейся в метастабилъном состоянии. Это означает, что при соответствующих температуре и давлении вода находится не в своем наиболее устойчивом (стабильном) состоянии. Явление, которое соответствует существованию воды в метастабильном состоянии, описываемом точками этой кривой, называется переохлаждением.
На фазовой диаграмме имеются две точки, представляющие особый интерес. Прежде всего отметим, что кривая давления пара воды заканчивается точкой С. Она называется критической точкой воды. При температурах и давлениях выше этой точки пары воды не могут быть превращены в жидкую воду никаким повышением давления (см. также разд. 3.1). Другими словами, выше этой точки паровая и жидкая формы воды перестают быть различимыми. Критическая температура воды равна 647 К, а критическое давление составляет 220 атм.
Точка Г фазовой диаграммы называется тройной точкой. В этой точке лед, жидкая вода и пары воды находятся в равновесии друг с другом. Этой точке соответствуют температура 273,16 К и давление 6,03 • 1000 атм. Лишь при указанных значениях температуры и давления все три фазы воды могут существовать вместе, находясь в равновесии друг с другом.
Иией может образовываться двумя способами: из росы либо непосредственно из влажного воздуха.
Образование инея из росы. Роса-это вода, образующаяся при охлаждении влажного воздуха, когда его температура понижается, пересекая (при атмосферном давлении) кривую TC на рис. 6.5. Иней образуется в результате замерзания росы, когда температура понижается настолько, что пересекает кривую ВТ.
Образование инея непосредственно из влажного воздуха. Иней образуется из росы только в том случае, если давление пара воды превышает давление тройной точки Г, т.е. больше 6,03-10~3 атм. Если же давление паров воды меньше этого значения, иней образуется непосредственно из влажного воздуха, без предварительного образования росы. В таком случае он появляется, когда понижающаяся температура пересекает кривую AT на рис. 6.5. В этих условиях образуется сухой иней.
ФАЗОВАЯ ДИАГРАММА ДИОКСИДА УГЛЕРОДА
Эта фазовая диаграмма показана на рис. 6.6.
Она подобна фазовой диаграмме воды, но отличается от нее двумя важными особенностями.
Во-первых, тройная точка диоксида углерода находится при давлении, намного превышающем 1 атм, а именно при 5,11 атм. Следовательно, при любых давлениях ниже этого значения диоксид углерода не может существовать в форме жидкости. Если твердый диоксид углерода (сухой лед) нагревать при давлении 1 атм, он сублимирует при температуре 159 К (- 78 °С). Это означает, что твердый диоксид углерода при указанных условиях переходит непосредственно в газовую фазу, минуя жидкое состояние.
Во-вторых, отличие от фазовой диаграммы воды заключается в том, что кривая ВТ имеет наклон вправо, а не влево. Молекулы диоксида углерода в твердой фазе упакованы более плотно, чем в жидкой фазе. Следовательно, в отличие от воды твердый диоксид углерода имеет большую плотность, чем жидкий. Такая особенность типична для большинства известных веществ. Таким образом, повышение внешнего давления благоприятствует образованию твердого диоксида углерода. Вследствие этого повышение давления приводит к тому, что температура плавления тоже повышается.
фазовая диаграмма серы
В разд. 3.2 было указано, что если какое-либо соединение может существовать в нескольких кристаллических формах, то считается, что оно проявляет полиморфизм. Если же какой-либо свободный элемент (простое вещество) может существовать в нескольких кристаллических формах, то такая разновидность полиморфизма называется аллотропия. Например, сера может существовать в двух аллотропных формах: в виде а-формы, имеющей орторомбическую кристаллическую структуру, и в виде (3-формы, имеющей моноклинную кристаллическую структуру.
На рис. 6.7 показана температурная зависимость свободной энергии (см. гл. 5) двух аллотропных форм серы, а также ее жидкой формы. Свободная энергия любого вещества уменьшается при повышении температуры. В случае серы а-аллотроп имеет наиболее низкую свободную энергию при температурах меньше 368,5 К и, следова тельно, наиболее устойчив при таких температурах. При температурах от 368,5 P (95,5 0C) до 393 К (120 0C) наиболее устойчив р-аллотроп. При температурах выш< 393 К наиболее устойчива жидкая форма серы.
В тех случаях, когда какой-либо элемент (простое вещество) может существовать в двух или нескольких аллотропных формах, каждая из которых устойчива в определен ном диапазоне изменения условий, считается, что он обнаруживает энантиотропик Температура, при которой два энантиотропа находятся в равновесии друг с другом называется температурой перехода. Температура энантиотропного перехода серы пр: давлении 1 атм равна 368,5 К.
Влияние давления на температуру перехода показывает кривая AB на фазово диаграмме серы, изображенной на рис. 6.8. Возрастание давления приводит к повыпи нию температуры перехода.
Сера имеет три тройные точки -А, В и С. В точке А, например, в равновесии межг собой находятся две твердые и паровая фазы. Эти две твердые фазы являются двуъ энантиотропами серы. Штриховые кривые соответствуют метастабильным условия; Например, кривая AD представляет собой кривую давления пара а-серы при темпер турах выше ее температуры перехода.
Энантиотропия других элементов
Сера-не единственный элемент, проявляющий энантиотропию. Олово, наприм« имеет два энантиотропа – серое олово и белое олово. Температура перехода меж ними при давлении 1 атм равна 286,2 К (13,2 °С).
фазовая диаграмма фосфора
В тех случаях, когда какой-либо свободный элемент (простое вещество) существует в нескольких кристаллических формах, лишь одна из которых устойчива, считается, что он проявляет монотропию.
Примером простого вещества, которое обнаруживает монотропию, является фосфор. В разд. 3.2 было указано, что фосфор имеет три формы. Устойчивым монотропом является красный фосфор. При атмосферном давлении эта форма устойчива до температуры 690 К (рис. 6.9). Белый фосфор и черный фосфор метастабильные (неустойчивые) монотропы. Черный фосфор может существовать только при высоких давлениях, которые не показаны на рис. 6.9. Тройная точка фосфора находится при температуре 862,5 К (589,5 °С) и давлении 43,1 атм. В этой точке красный фосфор, жидкий фосфор и пары фосфора находятся в равновесии друг с другом.
Оглавление:
- часть 1 (Cтроение атома, Химическая связь)
- часть 2 (Газы, жидкости и твердые вещества, Стехиометрия, Энергетика)
- часть 3 (Фазовые равновесия, Химическое равновесие, Ионы, Химическая кинетика)
- часть 4 (Электрохимия)
Источник