Какую температуру выдерживает микросхема

Какую температуру выдерживает микросхема thumbnail

В некоторых ситуациях необходимо, чтобы используемая радиоэлектронная схема выдерживала работу в жарких условиях, таких как внутренняя часть моторного отсека автомобиля, сельскохозяйственные системы, печи или посудомоечные машины. Кроме того, высокая термостойкость требуется в системах мониторинга батарей или фотоэлектрических систем. 

Чтобы определить какие одноплатные компьютеры и простые микроконтроллерные модули могут выдерживать повышенные температуры, был протестирован ряд плат: Arduino Uno, Arduino Nano с ATmega328P, Adafruit на основе ESP8266, Sparkfun Micro с ATmega32U4, Raspberry Pi 3 с SoC Broadcom BCM2837, а также Raspberry Pi Zero с чипом Broadcom BCM2836

Какую температуру выдерживает микросхема

Эти платы представляют собой прототипы, доступные на рынке для построения любительских и коммерческих, серийно выпускаемых устройств. Чтобы проверить какие из этих модулей могут выдерживать высокие температуры, каждый из них был помещен в электрическую печь, предварительно нагретую до 65, 93 и 121С. В таких условиях платам пришлось провести по 5 минут. 

Какую температуру выдерживает микросхема

На каждом модуле была запущена простая программа – мигание светодиода. Во время эксперимента наблюдался момент когда диод погаснет, что указывало на повреждение платы. Питание модуля обеспечивалось кабелем USB, проложенным между дверцей и корпусом духового шкафа.

Почему именно эти температуры были выбраны для испытаний? Потому что при 121C соединения начали проявлять значительные признаки деформации, что означало модуль больше нельзя использовать при этой температуре, если не применять специальные высокотемпературные соединения и пайку. Учитывая что Raspberry Pi снижает скорость процессора, когда достигается 85C, выбранные температурные пороги представляются разумным диапазоном, в котором с одной стороны, схемы могут работать и, с другой стороны, выходить за пределы указанных безопасных для них температур, что может привести к сбоям. 

Удивительно, но хотя температура каждого модуля превысила пределы, каждый из них мигал светодиодом на протяжении всего теста. Можно было бы предположить, что интегральные микросхемы не достигали заданной температуры печи в течение 5 минут после нахождения в ней, хотя они довольно тонкие и не слишком изолированы от окружающей среды. Это говорит о том, что микроконтроллерные модули могут быть очень горячими, что и подтверждено испытаниями.

Какую температуру выдерживает микросхема

Несмотря на то, что полученные результаты являются неожиданными, трудно было ожидать что какой-либо из модулей сможет выдержать температуры превышающие заявленные производителем. Поэтому было необходимо пойти еще дальше и повысить температуру печи до более высокой температуры. Заключительные испытания проводились при 180С. 

После разогрева духовки в нее поместили мигающий клон Arduino Nano, ожидая что светодиод перестанет мигать не более чем через 5 минут. Когда время прошло, LED все еще мигал. Учитывая, что это была среда с температурой почти на 90C выше максимальной для микропроцессора, это действительно удивительно. 

Какую температуру выдерживает микросхема

Несмотря на столь внушительную надежность было решено оставить этот модуль в духовке еще на 5 минут. Через 9 минут казалось, что модуль выйдет из испытания целым, но внезапно светодиод перестал мигать. Это было результатом замыкания провода идущего от платы к разъему USB, через который подавалось питание в схему.

Подведение итогов

Хотя при разработке радиосхем и необходимо следовать рекомендациям производителей, стоит отметить что они могут выдерживать значительно более высокую температуру окружающей среды в течение, по крайней мере, короткого периода времени. Конечно никто не поощряет установку устройств IoT прямо в духовку, но при адекватной теплоизоляции микроконтроллер, расположенный рядом с источником тепла, должен очень хорошо с этим справляться.

Источник

Флюсы
В процессе пайки, от нагрева, детали окисляются и припой перестает их смачивать. Чтобы этого не происходило используют флюсы — вещества которые растворяют оксидную пленку, способствуют пайке. Кстати, если кто не в курсе, процесс покрытия одного металла другим зовется лужением. Банальные вещи говорю? Ну так ведь ликбез так ликбез! 🙂

Канифоль

Канифоль - классика жанра
Канифоль — классика жанра

Самый простой и народный флюс. Это обычная очищенная сосновая смола. При пайке сначала берут на жало немного припоя, потом тычут в канифоль, чтобы набрать на жало смолы, а затем быстро, пока смола не испарилась, паяют. Способ не сильно удобный, поэтому часто делают по другому. Берут обычный этиловый (медицинский) спирт и растовряют в нем толченую канифоль пока она растворяется. После этот раствор наносят кисточной на спаиваемые детали и паяют. Активность канифоли не высока, поэтому иной раз ничего не получается — детали не не лудятся, но зато у канифоли есть одно огромное достоинство, которое порой перекрывает все ее недостатки. Канифоль абсолютно пассивна. То есть ее не нужно удалять с места пайки, так как она не окисляет и не восстанавливает металлы, являясь при этом отличным диэлектриком. Именно по этому самые ответственные пайки я стараюсь делать спирто-канифольным флюсом.

ЛТИ-120

Один из моих любимых флюсов. Представляет из себя рыжую жидкость, имеет в своем составе канифоль и еще ряд присадок. Паять им также как и обычным спирто-канифольным флюсом — намазать кисточкой на детали и паять. Но есть одна хитрость. В изначальном варианте ЛТИ-120 жидкий зараза, мажется тонким слоем и моментально высыхает, в общем пользоваться им не очень удобно. Я придумал как это побороть.
Я сделал себе палитру флюсов — наклеил на мелкую компашку кучу крышечек от флакончиков, налил в них разных флюсов и наклеил это дело на катушку с припоем. Получилось очень удобно и компактно. Так вот, налив ЛТИ-120 в крышечку я даю ему постоять пару дней. За это время он подсохнет и загустеет до состояния жидкого мёда. Вот его уже удобно намазывать острой зубочисткой точно туда куда надо. А если загустеет сверх меры, то либо туда немного спирту капну, либо подолью еще немного свежего флюса и размешаю. Производитель утверждает, что ЛТИ-120 смывать не нужно. В принципе, вроде бы так оно и есть, он не активный. Но что то меня смущают присадки которые в нем, поэтому я его смываю всегда. Смывается он широкой кисточкой, смоченной в спирте. Или просто щеткой под струей воды из под крана. Нет ничего страшного в том, чтобы отмывать готовую плату водой, главное хорошо высушить потом.

Читайте также:  При какой температуре замерзает роза на улице

Канифоль-гель
Отличная штука. Не так давно появился в радиомагазинах и уже заслужил мою любовь и уважение. Представляет из себя густую коричневую пасту на основе канифоли, продается в шприцах. Отлично намазывается непосредственно туда где надо, не оставляет нагара на паяльнике, как ЛТИ-120. Легко смывается водой или спиртом, в общем, рулез!

Глицерин-гидразин.
Убойный активный флюс, который легко смывается водой, не оставляет грязных липких следов и окислов. Но его надо смывать. Тщательно смывать. Иначе за пару лет он может разъесть дорожки платы или его остатки станут токопроводными и возникнут жуткие утечки по поверхности платы между дорожками, что крайне негативно скажется на работе схемы. Еще я не уверен в безопасности его паров. На раз два попользоваться можно, но вот постоянно его юзать мне как то не улыбается. Но в целом это офигенный флюс, паять им одно удовольствие.

Глицерин-Салициловый флюс.
Он же ФСГЛ. Честно говоря я понятия не имею откуда эта хрень вообще берется. У меня банка этого флюса имеется с детства (собственно поэтому канифолью то я практически не паял никогда) — батя стырил с оборонного предприятия. В свободной продаже не видел ни разу. Паяет также ядрёно как и Глицерин-гидразин, но не имеет в своем составе сомнительных с точки зрения токсичности примесей. Там 90% глицерина, 5% салициловой кислоты, 5% воды. Купить чтоль в аптеке салицилки и самому сбодяжить? Уж больно чумовой рецепт. Один недостаток — нужно смывать, он активный. Но смывается водой влегкую.

Ф-34А
Адская кислотная смесь. При пайке имеет жуткий едкий выхлоп, которым я потравил половину нашей лаборатории. Паять этой гадостью можно только в противогазе и с мощной вытяжкой, но зато это дерьмище паяет все, то что другим флюсам даже в страшном сне не снилось. Эта жижа залуживает влет — ржавчину, окислы, сталь, напыления, даже алюминий можно паять. Так что если тебе надо будет припаяться к ржавому гвоздю, то капни этой херни, задережи дыхание и ЛУДИ!

Импортные безотмывочные флюсы.
Честно говоря ими я не пользовался. Говорят они круты, но имхо паять ими просто так это не рационально — слишком уж дорогие они, да и у нас в городе не продают, а заказывать мне западло. Скорей они для профессионального применения, вроде ремонта сотовых или пайки BGA корпусов (это когда ножки в виде массива шариков под корпусом микросхемы). Если интересно, то поищите инфу на форумах ремонтников сотовых, они про это дело знают все.

Голландский флюс на основе конопли
Понятия не имею кто его делает и где его продают, но я точно знаю что он есть! Особенно я в этом убедился после ковыряния в схемах продукции фирмы где я раньше работал. Разработчики явно паяют им. Так как таких укуренных схемотехнических решений я еще не видел.

Паяльник в руки и вперед!!!
Про флюсы я тебе рассказал, теперь, собственно, о процессе пайки.
Дело это не хитрое. Для начала желательно облудить детали. Смачиваешь их флюсом, подцепляешь жалом паяльника чуть чуть припоя и размазываешь по поверхности. Торопиться не надо, детали должны покрыться ровным тонким блестящим слоем. Выводы микросхем и радиодеталей лудить не нужно — они уже на заводе облужены.

Читайте также:  При какой температуре таксу одевают

Припой должен быть жидким, как вода. Если он комковатый, с ярко выраженной зернистостью и матовый, то тут причины две — неправильная температура паяльника, либо припой низкопробное говно. Если паяльник слишком холодный то припой будет на грани твердого и жидкого состояния, будет вязким и не будет смачивать. Если же паяльник перегрет, то припой будет моментально покрываться серой пленкой окисла и тоже будет отвратительно лудить. Идеальная температура паяльника при пайке припоем ПОС-40 (60/40 Alloy), на мой взгляд, это порядка 240-300 градусов. У СТ-96 достаточно выставить регулятор на 2/3 в сторону увеличения.

Если паяешь печатную плату, то дорожки тоже надо залудить. Но делать это надо осторожно. Текстолит, что продается на просторах Родины зачастую тоже оказывается редкостным говном и при нагреве фольга от него отваливается в момент. Поэтому долго греть плату нельзя — отвалятся дорожки. Обычно я просто смазываю хорошенько все дорожки флюсом ЛТИ-120 и провожу быстренько по каждой плоским жалом паяльника с капелькой припоя. В Результате имею идеально залуженные дорожки, с практически зеркальной поверхностью.

Есть народный способ для быстрого лужения больших плат:

Берется оплетка для удаления припоя, это такая медная мочалка, продается в мотках по 30 рублей метр. Если не найдешь, то можешь выковырять из толстого телевизионного коаксиального кабеля экранирующую оплетку — та же херня только возни больше. Плата как следует смазывается флюсом, оплетка как следует пропитывается припоем и тоже поливается флюсом. Дальше эта хрень возякается паяльником по поверхности платы. Чтобы ворсинки оплетки не пристывали к дорожкам, лучше взять паяльник побольше и помассивней.

Я так вообще усовершенствовал способ.
Взял старый мощный паяльник на 60Вт, обмотал у него жало этой оплеткой, пропитал её сплавом Розе и теперь лужу платы в одно движение. Почему именно Розе? А им лудить проще, паяльник когда касается платы резко остывает, т.к. отдает тепло. Если оплетка смочена обычным припоем, то она тут же приваривается отдельными ворсинками к плате, а сплав Розе легкоплавный и не прилипает.

Пайка транзисторов, диодов и микросхем.
Тут я бы хотел заострить внимание особо. Дело в том, что полупроводники от слишком высокой температуры разрушаются, поэтому есть риск пожечь микросхему перегревом. Чтобы этого не произошло желательно выставить паяльник на 230 градусов или около того. Это вполне терпимая температура, которую микросхема выдерживает довольно долго. Можно паять и не торопиться. У обычных, не регулируемых паяльников, температура жала порядка 350-400 градусов, поэтому паять надо быстро, в одно касание. Не дольше секунды на каждой ножке и делать хотя бы 10-15 секундный перерыв, прежде чем приступать к пайке другой ножки. Также можно придерживать ножку металлическим пинцетом — он послужит теплоотводом.

Пайка проводов
Лучше перед пайкой концы облуживать отдельно, а если провод припаивается к печатной плате, то очень желательно просверлить в плате дырку, завести его с другой стороны и только тогда паять. В таком случае риск оторвать дрожку при рывке за провод сводится к нулю.

Пайка проволокой припоя.
Так обычно паяют микросхемы. Прихватывают ее по диагонали за крайние ножки, смазывают все флюсом, а потом, держа одной рукой паяльник, а другой тонкую проволочку припоя, быстро запаивают все ножки.

Пайка проводов в лаковой изоляции
Всякий обмоточный провод, вроде тех которым намотан трансформатор, покрыт тонким слоем лака. Чтобы припаяться к нему этот слой лака нужно содрать. Как это сделать? Если провод толстый, то можно пожечь его немного огнем зажигалки, лак сгорит, а нагар можно счистить грубой картонкой. Если же провод тонкий, то тут либо аккуратно поскоблить его скальпелем, держа скальпель строго перпендикулярно проводу, либо взять таблетку аспирина и как следует прижать и пошоркать горячим жалом паяльника по проводу на аспиринке. При нагреве из аспирина выделится вещество которое сожрет лаковую изоляцию и очистит провод. Правда вонять будет сильно 🙂

Третья рука

Удобная держалка.
Удобная держалка.

Рекомендую обзавестись вот таким вот захватом. Чертовски удобная штука, позволяет придерживать какого-нибудь Ктулху при пайке, концы не болтаются из стороны в сторону. Кстати, бойтесь подпружиненных проводников! При пайке он может соскочить и метнуть вам в лицо капельку припоя, сколько раз мне в лицо такое прилетало уже и не припомню, а ведь могло и в глаз! Так что соблюдайте Технику безопасности!

Губка
Жало паяльника постепенно загаживается и покрывается нагаром. Это нормально, обычно виной ему флюс, тот же ЛТИ-120 горит дай боже. Для очистки паяльника можно применять специальную губку. Такая желтая фигня, идет в комплекте к подставкам для паяльника. Ее надо смочить водой и отжать, оставляя влажной. Кстати, губка постоянно высыхает, чтобы ее каждый раз не мочить ее можно пропитать обычным медицинским глицерином. Тогда она не будет высыхать вообще! Удобно блин! Если нет губки, то возьми хлопчатобумажну тряпочку, положи в железный поддончик и также пропитай водой или глицерином. У нас монтажницы держали на столе обычное вафельное полотенце и об него вытирали паяльник.

Читайте также:  При какой температуре кипит масло моторное

Кстати, о технике безопасности.

  • Во первых расположите все так, чтобы было удобно.
  • Следите за шнурами питания. Паяльник очень любит пережигать свой собственный провод. Прям мания у него. А это черевато в лучшем случае ремонтом провода, в худшем коротким замыканием и пожаром.
  • Не оставляйте паяльник включенным даже на короткое время. Правило «Ушел — выключил» должно выполняться железно.
  • Правило второе — паяльник должен быть либо в руке, либо на своей надежной подставке. И ни как иначе! Класть его на стол или на первую попвшуюся фиговину на столе ни в коем случае нельзя. Шнур его утащит за собой в момент.
  • Не забывайте про вытяжку и вентиляцию. Если паяешь, то как минимум открой форточку, проветривай помещение, а лучше поставь на стол вентилятор (хотя бы 80мм от компа) или вытяжку.

Лучше один раз увидеть, чем сто раз прочитать:
Нет проблем! К твоим услугам куча роликов с You Tube по запросу «solder». Увидишь как это делают профессионалы. Смотри и учись!

Источник

>>все это в теории выглядит красиво – пирометр, температура плавления 252…… это при условии, что эта самая бессвинцовка находится или в тигле или в паяльно- конвекционном шкафу, но не в случае косвенного нагрева соплом станции паек со следами окислов. такчто не спешите вешать ярлыки “убийц-ужаривателей” на мастеров.

P.S. даже самый здоровый экран можно снять при температуре 280 С. Паяю на 270.
ключевое слово – “можно снять” и снимаю – разницу улавливаете ?
>>
Я всех псевдо-мастеров, не пользующихся нижним подогревом, уже давно (со времен появления безсвинцовки) считаю убийцами! И не надо придираться к словам: читать “нужно снимать при температуре 280 С”
По поводу окислов: Вы что паяете без флюса??! А Вы знаете что именно хороший флюс с огромной проникающей способностью и очень хорошими теплопроводными качествами обеспечивает равномерный разогрев мсх и легкое её снятие, допустим, с утопленника? А Вы знаете, что при температуре в 350 С любой флюс теряет свои облуживающие свойства и окисляестя сам (темнеет-коричневеет) и начинает очень быстро испаряться – идет очень много дыма?
Да, температура плавления припоя зависит от многих факторов: от циркуляции воздуха в помещении, от температуры воздуха в помещении, даже от влажности оного… А для чего пирометр?

>>При снятии бга микросхемы низ ставлю 250 а верх 300-320 не больше в зависимости что за микросхема,температуру больше 320 никогда не поднимаю.
Ну так если температура плавления бессвинцового припоя (все современные телефоны) – 252 градуса, а обычного – гораздо ниже, то при 250-градусном нижнем подогреве с нижней стороны платы слетят:
а) все элементы на обычном припое и сплаве Розе/Вуда
б) могут слететь заводские элементы (на бессвинцовке).
Как Вы избегаете таких “полётов” ?>>
Почитайте, пожалуйста, при силу поверхностного натяжения жидкостей и все поймете. Я никогда не пользовался сплавами Розе или Вуда, но системные разъемы на свинцовом припое ни разу не падали. Полеты элементов возможны только если они обладают большой массой и маленькими (по площади) точками пайки, например, сим-холдер 6630 иногда отваливался, всегда успевал вытащить… Знакомый, который пользуется Розе, говорит, что ни разу элементы не срывались, но своими глазами не видел 100% не гарантирую. Кстати, завод изготовитель сажает экраны на более легкоплавкий сплав (тоже безсвинцовка, другие соотношения олова-меди-серебра) их легче снимать. Нижний преднагреватель должен нагревать плату, до температуры ее ВЕРХНЕЙ поверхности 190 С, тогда свинцовый припой становится пластичным, но не жидким, а безсвинцовый очень легко расплавляется при малом верхнем нагреве. Как проконтролировать момент демонтажа мсх? – безсвинцовый припой в твердом и амфотерном состоянии имеет матовую поверхность, при уверенном плавлении становится зеркальным.

И вообще большинство пишет, что легко снимают БГА комноненты нагревом с одной стороны, а знают ли они, что паять надо по термопрофилю, т.е. кривая нагрева платы не есть прямая линия? Нагрел до 300 С и снял… Щас!!! попробуйте снять и припаять север на Asus X50/X59…
… и как без неё я работал Quick 2035… голь на выдумки хитра
ЗЫ: не умею отвечать с цитированием

Источник