На какой высоте плотность воздуха при температуре

На какой высоте плотность воздуха при температуре thumbnail

Привет, друзья!

Атмосфера Земли и физические свойства воздуха.

Голубая планета…

Эта тема должна была появится на сайте одной из первых. Ведь самолеты и вертолеты – атмосферные летательные аппараты. Атмосфера Земли – их, так сказать, среда обитания :-). А физические свойства воздуха как раз и определяют качество этого обитания :-). То есть это одна из основ. И об основе всегда пишут вначале. Но сообразил я об этом только сейчас. Однако лучше, как известно, поздно, чем никогда… Коснемся этого вопроса, в дебри и ненужные сложности однако не залезая :-).

Итак… Атмосфера Земли. Это газовая оболочка нашей голубой планеты. Такое название всем известно. А почему голубая? Просто потому, что «голубая» ( а также синяя и фиолетовая ) составляющая солнечного света (спектра) наиболее хорошо рассеивается в атмосфере, окрашивая ее тем самым в голубовато-синеватые, иногда с оттенком фиолетового тона (в солнечный день, конечно :-)).

Атмосфера Земли и физические свойства воздуха.

Состав атмосферы Земли.

Состав атмосферы достаточно широк. Перечислять в тексте все составляющие не буду, для этого есть хорошая иллюстрация.Состав всех этих газов практически постоянен, за исключением углекислого газа (СО2). Кроме того в атмосфере обязательно содержится вода в виде паров, взвеси капель или кристаллов льда. Количество воды непостоянно и зависит от температуры и, в меньшей степени, от давления воздуха. Кроме того атмосфера Земли (особенно нынешняя) содержит и определенное количество я бы сказал «всякой гадости» :-). Это SO2, NH3, CO, HCl, NO, кроме того есть там пары ртути Hg. Правда все это находится там в небольших количествах, слава богу :-).

Атмосферу Земли принято делить на несколько следующих друг за другом по высоте над поверхностью зон.

Первая, самая близкая к земле — это тропосфера. Это самый нижний и, так сказать, основной слой для жизнедеятельности разного вида. В нем содержится 80% массы всего атмосферного воздуха (хотя по объему она составляет всего около 1% всей атмосферы) и около 90% всей атмосферной воды. Основная масса всех ветров, облаков, дождей и снегов ???? — оттуда. Тропосфера простирается до высот порядка 18 км в тропических широтах и до 10 км в полярных. Температура воздуха в ней падает с подъемом на высоту примерно 0,65º  на каждые 100 м.

Атмосфера Земли и физические свойства воздуха.

Атмосферные зоны.

Зона вторая – стратосфера. Надо сказать, что между тропосферой и стратосферой выделяют еще одну узкую зону – тропопаузу. В ней прекращается падение температуры с высотой. Тропопауза имеет среднюю толщину 1,5- 2 км, но границы ее нечетки и тропосфера часто перекрывает стратосферу.

Так вот стратосфера имеет высоту в среднем от 12 км до 50 км. Температура в ней до 25 км остается неизменной (порядка -57ºС), затем где-то до 40 км повышается примерно до 0ºС и далее до 50 км остается неизменной. Стратосфера – относительно спокойная часть атмосферы земли. Неблагоприятные погодные условия в ней практически отсутствуют. Именно в стратосфере располагается знаменитый озоновый слой на высотах от 15-20 км до 55-60 км.

Далее следует небольшой пограничный слой стратопауза, температура в которой сохраняется около 0ºС, и затем следующая зона мезосфера. Она простирается до высот 80-90 км, и в ней температура падает примерно до 80ºС. В мезосфере обычно становятся видны мелкие метеоры, которые начинают в ней светиться и там же сгорают.

Следующий узкий промежуток – мезопауза и за ней зона термосфера. Ее высота – до 700-800 км. Здесь температура опять начинает повышаться и на высотах порядка 300 км может достигать величин порядка 1200ºС. Далее она остается постоянной. Внутри термосферы до высоты около 400 км расположена ионосфера. Здесь воздух сильно ионизирован из-за воздействия солнечной радиации и обладает большой электропроводностью.

Следующая и, вобщем-то, последняя зона – экзосфера. Это так называемая зона рассеяния. Здесь в основном присутствует очень сильно разреженный  водород и гелий (с преобладанием водорода). На высотах порядка 3000 км экзосфера переходит в ближнекосмический вакуум.

Вот примерно где-то так. Почему примерно? Потому что слои эти достаточно условны. Возможны различные изменения высоты, состава газов, воды, величины температуры, ионизации и так далее. Кроме того существует еще немало терминов, определяющих строение и состояние атмосферы земли.

Например гомосфера и гетеросфера. В первой атмосферные газы хорошо перемешаны, и их состав достаточно однороден. Вторая расположена выше первой и такого перемешивания там уже практически нет. Газы в ней разделяет гравитация. Граница между этими слоями расположена на высоте 120 км, и называется она турбопауза.

С терминами пожалуй покончим, но обязательно еще добавлю, что условно принято считать, что граница атмосферы расположена на высоте 100 км над уровнем моря. Эта граница называется Линия Кармана.

Добавлю еще две картинки для иллюстрации строения атмосферы. Первая, правда, на немецком, но зато полная и достаточно легка в понимании :-). Ее можно увеличить и хорошо рассмотреть. Вторая показывает изменение температуры атмосферы с высотой.

Атмосфера Земли и физические свойства воздуха.

Строение атмосферы Земли.

Атмосфера Земли и физические свойства воздуха.

Изменение температуры воздуха с высотой.

Современные пилотируемые орбитальные космические аппараты летают на высотах около 300-400 км. Однако это уже не авиация, хотя область, конечно, в определенном смысле близкородственная, и мы о ней еще непременно поговорим :-).

Зона авиации – это тропосфера. Современные атмосферные летательные аппараты могут летать и в нижних слоях стратосферы. Например практический потолок МИГ-25РБ – 23000 м.

Атмосфера Земли и физические свойства воздуха.

Полет в стратосфере.

И именно физические свойства воздуха тропосферы определяют каким будет полет, насколько будет эффективна система управления самолета, как будет влиять на него турбулентность в атмосфере, как будут работать двигатели.

Первое основное свойство – это температура воздуха. В газодинамике она может определяться по шкале Цельсия либо по шкале Кельвина.

Температура t1 на заданной высоте Н по шкале Цельсия определяется:

t1 = t— 6,5Н , где t– температура воздуха у земли.

Температура по шкале Кельвина называется абсолютной температурой, ноль по этой шкале – это абсолютный ноль. При абсолютном нуле прекращается тепловое движение  молекул. Абсолютный ноль по шкале Кельвина соответствует -273º по шкале Цельсия.

Соответственно температура Т на высоте Н по шкале Кельвина определяется:

T = 273K + t — 6,5H

Давление воздуха. Атмосферное  давление измеряется в Паскалях (Н/м2), в старой системе измерения в атмосферах (атм.). Существует еще такое понятие как барометрическое давление. Это давление, измеренное в миллиметрах ртутного столба при помощи ртутного барометра. Барометрическое давление (давление на уровне моря) равное 760 мм рт. ст. называется стандартным. В физике 1 атм. как раз и равна 760 мм рт.ст.

Плотность воздуха. В аэродинамике чаще всего пользуются таким понятием, как массовая плотность воздуха. Это масса воздуха в 1 м3 объема. Плотность воздуха с высотой меняется, воздух становится более разреженным.

Влажность воздуха. Показывает количество воды, находящееся в воздухе. Существует понятие «относительная влажность». Это отношение массы водяного пара к максимально возможной при данной температуре. Понятие 0%, то есть когда воздух совершенно сухой может существовать вобщем-то только в лаборатории. С другой стороны 100%-ная влажность вполне реальна. Это означает, что воздух впитал в себя всю воду, которую мог впитать. Что-то типа абсолютно «полной губки». Высокая относительная влажность снижает плотность воздуха, а малая, соответственно повышает.

Читайте также:  Какая температура для бетона

В связи с тем, что полеты самолетов происходят при разных атмосферных условиях, то и их полетные и аэродинамические параметры на одном режиме полета могут быть различными. Поэтому для правильной оценки этих параметров введена Международная стандартная атмосфера (МСА). Она показывает изменение состояния воздуха с подъемом на высоту.

За основные  приняты  параметры состояния воздуха при нулевой влажности:

давление  P = 760  мм рт. ст. (101,3 кПА);

температура  t = +15°C (288 К);

массовая плотность ρ = 1,225 kg/m3;

Для МСА принято (как уже было сказано выше :-)), что температура падает в тропосфере на 0,65º на каждые 100 метров высоты.

Атмосфера Земли и физические свойства воздуха.

Стандартная атмосфера (пример до 10000 м).

Таблицы МСА используются при градуировании пилотажно-навигационных приборов, а также для штурманских и инженерных расчетов.

Физические свойства воздуха включают в себя также такие понятия как инертность, вязкость и сжимаемость.

Инертность — свойство воздуха, характеризующее его способность сопротивляться изменению состояния покоя или равномерного прямолинейного движения. Мерой инертности является массовая плотность воздуха. Чем она выше, тем выше инертность и сила сопротивления среды при движении в ней самолета.

Вязкость. Определяет сопротивление трения об воздух при движении самолета.

Сжимаемость определяет изменение плотности воздуха при изменении давления. На малых скоростях движения летательного аппарата (до 450 км/ч) изменения давления при обтекании его воздушным потоком не происходит, но при больших скоростях начинает проявляться эффект сжимаемости. Особенно сказывается его влияние на сверхзвуке. Это отдельная область аэродинамики и тема для отдельной статьи :-).

Ну вот кажется пока все… Пора закончить это слегка нудноватое перечисление, без которого однако не обойтись :-). Атмосфера Земли, ее параметры, физические свойства воздуха также важны для летательного аппарата, как и параметры самого аппарата, и о них нельзя было не упомянуть.

Пока, до следующих встреч и более интересных тем ???? …

P.S. На сладкое предлагаю посмотреть ролик снятый из кабины спарки МИГ-25ПУ при его полете в стратосферу. Снимал, видимо, турист, у которого есть деньги для таких полетов :-). Снято в основном все через лобовое стекло. Обратите внимание на цвет неба…

Источник

Все про плотность воздуха при нормальных и прочих условиях

Плотность воздуха — это физическая величина, характеризующая удельную массу воздуха при естественных условиях или массу газа атмосферы Земли на единицу объема. Величина плотности воздуха представляет собой функцию от высоты производимых измерений, от его влажности и температуры.

  • Плотность воздуха равна…
  • Определение плотности воздуха
  • Формула плотности воздуха
  • Что такое относительная плотность по воздуху?
  • Как плотность воздуха зависит от температуры?
  • Как измеряется плотность паров по воздуху?

Плотность воздуха равна… ^

За стандарт плотности воздуха принята величина, равная 1,29 кг/м3, которая вычисляется как отношение его молярной массы (29 г/моль) к молярному объему, одинаковому для всех газов (22,413996 дм3), соответствующая плотности сухого воздуха при 0°С (273,15°К) и давлении 760 мм ртутного столба (101325 Па) на уровне моря (то есть при нормальных условиях).

Определение плотности воздуха ^

Не так давно сведения о плотности воздуха получали косвенно за счет наблюдений за полярными сияниями, распространением радиоволн, метеорами. С момента появления искусственных спутников Земли плотность воздуха начали вычислять благодаря данным, полученным от их торможения.

Еще один метод заключается в наблюдениях за расплыванием искусственных облаков из паров натрия, создаваемых метеорологическими ракетами. В Европе плотность воздуха у поверхности Земли составляет 1,258 кг/м3, на высоте пяти км — 0,735, на высоте двадцати км — 0,087, на высоте сорока км — 0,004 кг/м3.

Различают два вида плотности воздуха: массовая и весовая (удельный вес).

освежители воздуха для комнаты

Как выбрать освежители воздуха для комнаты, какие они бывают?

Если вам стало тяжело дышать, какие могут быть причины этого явления? Об этом можно прочитать здесь. Бережем свое здоровье!

Формула плотности воздуха ^

На какой высоте плотность воздуха при температуре

Весовая плотность определяет вес 1 м3 воздуха и вычисляется по формуле γ = G/V, где γ – весовая плотность, кгс/м3; G — вес воздуха, измеряемый в кгс; V – объем воздуха, измеряемый в м3. Установлено, что 1 м3 воздуха при стандартных условиях (барометрическое давление 760 мм ртутного столба, t=15°С) весит 1,225 кгс, исходя из этого, весовая плотность (удельный вес) 1 м3 воздуха равна γ =1,225 кгс/м3.

Что такое относительная плотность по воздуху? ^

Следует принять во внимание, что вес воздуха – это величина изменчивая и меняется в зависимости от различных условий, таких как географическая широта и сила инерции, которая возникает при вращении Земли вокруг своей оси. На полюсах вес воздуха на 5% больше, чем в зоне экватора.

Массовая плотность воздуха – это масса 1 м3 воздуха, обозначаемая греческой буквой ρ. Как известно, масса тела – величина постоянная. За единицу массы принято считать массу гири из иридистой платины, которая находится в Международной палате мер и весов в Париже.

Массовая плотность воздуха ρ вычисляется по следующей формуле: ρ = m / v. Здесь m – масса воздуха, измеряемая в кг×с2/м; ρ – его массовая плотность, измеряемая в кгс×с2/м4.

Массовая и весовая плотности воздуха находятся в зависимости: ρ = γ / g, где g – коэффициент ускорения свободного падения, равный 9,8 м/с². Откуда следует, что массовая плотность воздуха при стандартных условиях равна 0,1250 кг×с2/м4.

Как плотность воздуха зависит от температуры? ^

При изменении барометрического давления и температуры плотность воздуха изменяется. Исходя из закона Бойля-Мариотта, чем больше давление, тем больше будет плотность воздуха. Однако с уменьшением давления с высотой, уменьшается и плотности воздуха, что привносит свои коррективы, в результате чего закон изменения давления по вертикали становится сложнее.

Уравнение, которое выражает данный закон изменения давления с высотой в атмосфере, находящейся в покое, называется основным уравнением статики.

Оно гласит, что с увеличением высоты давление изменяется в меньшую сторону и при подъеме на одну и ту же высоту уменьшение давления тем больше, чем больше сила тяжести и плотность воздуха.

Важная роль в этом уравнении принадлежит изменениям плотности воздуха. В итоге можно сказать, что чем выше подниматься, тем меньше будет падать давление при подъеме на одинаковую высоту. Плотность воздуха от температуры зависит следующим образом: в теплом воздухе давление уменьшается менее интенсивно, чем в холодном, следовательно, на одинаково равной высоте в теплой воздушной массе давление более высокое, чем в холодной.

При изменяющихся значениях температуры и давления массовая плотность воздуха вычисляется по формуле: ρ = 0,0473хВ / Т. Здесь В – это барометрическое давление, измеряемое в мм ртутного столба, Т — температура воздуха, измеряемая в Кельвинах.

газовые обогреватели для дачи

Как выбирают газовые обогреватели для дачи, по каким характеристикам, параметрам?

Что такое промышленный осушитель сжатого воздуха? Читайте про это здесь, наиболее интересная и актуальная информация.

Какие сейчас цены на озонотерапию? Вы узнаете об этом в данной статье:
https://about-air.ru/sostav-vozduha/ozon/ozonoterapiya-otzyvy.html. Отзывы, показания и противопоказания при озонотерапии.

Как измеряется плотность паров по воздуху? ^

На какой высоте плотность воздуха при температуре

Также плотность определяется и влажностью воздуха. Наличие водяных поров приводит к уменьшению плотности воздуха, что объясняется низкой молярной массой воды (18 г/моль) на фоне молярной массы сухого воздуха (29 г/моль). Влажный воздух можно рассмотреть как смесь идеальных газов, в каждом из которых комбинация плотностей позволяет получить требуемое значение плотности для их смеси.

Читайте также:  При какой температуре гибнут гельминты в рыбе

Такая, своего рода, интерпретация позволяет определять значения плотности с уровнем погрешности менее 0,2% в диапазоне температур от −10 °C до 50 °C. Плотность воздуха позволяет получить величину его влагосодержания, которая вычисляется путем деления плотности водяного пара (в граммах), который содержится в воздухе, на показатель плотности сухого воздуха в килограммах.

Основное уравнение статики не позволяет решать постоянно возникающие практические задачи в реальных условиях изменяющейся атмосферы. Поэтому его решают при различных упрощенных предположениях, которые соответствуют фактическим реальным условиям, за счет выдвижения ряда частных предположений.

Основное уравнение статики дает возможность получить значение вертикального градиента давления, который выражает изменение давления при подъеме или спуске на единицу высоты, т. е. изменение давления на единицу расстояния по вертикали.

Вместо вертикального градиента нередко используют обратную ему величину — барическую ступень в метрах на миллибар (иногда еще встречается устаревший вариант термина «градиент давления» — барометрический градиент).

Низкая плотность воздуха определяет незначительное сопротивление передвижению. Многими наземными животными, в ходе эволюции, использовались экологические выгоды этого свойства воздушной среды, за счет чего они приобрели способность к полету. 75% всех видов наземных животных способны к активному полету. По большей части это насекомые и птицы, но встречаются млекопитающие и рептилии.

Видео на тему «Определение плотности воздуха»

Источник

Random converter

  • Калькуляторы
  • Термодинамика — теплота

Калькулятор зависимости температуры, давления и плотности воздуха от высоты в стандартной атмосфере

Калькулятор Международной стандартной атмосферы (МСА) и Стандартной атмосферы США 1976 г.

Scheme

Этот калькулятор определяет атмосферное давление, плотность воздуха, температуру и скорость звука для заданных высоты и отклонения температуры от стандартного значения с использованием методики, принятой в Международной стандартной атмосфере (International Standard Atmosphere, МСА, англ. ISA) и Стандартной атмосфере США 1976 г. (1976 U.S. Standard Atmosphere, USSA). В диапазоне высот 0–86 км, на который рассчитан этот калькулятор, обе модели дают одинаковые результаты. Отклонение температуры, которое вводится в калькулятор — это отклонение от стандартной температуры атмосферы 15 °C. Например, если реальная температура воздуха над поверхностью земли равна 28 °C, то нужно ввести отклонение температуры 10 °C. Калькулятор позволяет выбрать различные величины радиуса Земли, используемые в расчетах.

Пример: рассчитать давление атмосферы, плотность воздуха, температуру и скорость звука на обычной крейсерской высоте полета 35 000 футов (10 600 м) при отклонении температуры от нормальной 10 °С.

Входные данные

Высота (геометрическая)

h

Отклонение температуры

to

Радиус Земли, R

Поделиться ссылкой на этот калькулятор, включая входные параметры

Выходные данные

Давление

p Па

Плотность воздуха

ρ кг/м³ (г/л)

Температура

t  К   °C

Скорость звука

c  м/с   км/ч

Ускорение силы тяжести

ge м/с²

Геопотенциальная высота

h км

Для расчета введите значения в соответствующие поля, выберите метрические или традиционные единицы измерения и нажмите кнопку Рассчитать.

Земная атмосфера находится в непрерывном движении. Поэтому были разработаны гипотетические модели, которые приблизительно показывают поведение атмосферы, если воздух не содержит пыли и влаги, а также нет ветра и возмущений. Эти модели известны под названием «стандартная атмосфера». Они необходимы для расчетов и проектирования воздушных судов, для изучения их характеристик, для сравнения результатов испытаний воздушных судов и для решения многих других задач в авиации и других отраслях науки и техники.

Концепция стандартной атмосферы была разработана для стандартизации и унификации калибровки высотомеров, для изучения характеристик авиационных двигателей, при разработке которых очень важно точно знать величины плотности и давления воздуха, температуры атмосферы на среднем уровне моря, а также их распределение по высоте. Международная стандартная атмосфера (ISA) является одной из таких моделей. Международная организация по стандартизации (ISO) опубликовала эту модель в качестве международного стандарта ISO 2533:1975. Организации по стандартизации разных стран публикуют собственные атмосферные модели, основанные на стандарте ISA. Широко известным стандартом атмосферы является Стандартная атмосфера США 1976 г., в которой используется модель атмосферы, основанная на стандарте ISA. Различие между этими двумя моделями имеются на высотах более 86 км, которые в данном калькуляторе не рассматриваются. В России используется ГОСТ 4401-81 «Атмосфера стандартная. Параметры», также основанный на стандарте ISA.

Земная атмосфера находится в постоянном движении

Международная стандартная атмосфера (ISA)

Международная стандартная атмосфера «предназначена для использования в расчетах летательных аппаратов, для приведения результатов испытаний летательных аппаратов и их компонентов к одинаковым условиям и для унификации разработки и калибровки приборов». Использование этой атмосферной модели также рекомендуется при обработке данных геофизических и метеорологических наблюдений. Модель атмосферы используется в качестве стандарта, с которым можно сравнить реальную атмосферу. Значения температуры, давления и плотности воздуха уменьшаются с ростом высоты. На уровне моря они имеют следующие значения:

  • Давление 101,325 кПа.
  • Температура +15  °C.
  • Плотность 1,225 кг/м³.

Стандартная атмосфера США

«Стандартная атмосфера США, 1976 г. является идеализированным представлением земной атмосферы в статическом состоянии от поверхности до высоты 1000 км». Модель основана на существующих международных стандартах и, в основном, использует методологию, принятую в Международной стандартной атмосфере (ISA). Уравнения модели были приняты Комитетом по расширению стандартной атмосферы США (United States Committee on Extension to the Standard Atmosphere, COESA), который представлял 29 научных, правительственных, военных и инженерных организаций США. В модели атмосфера разделяется на семь слоев до максимальной высоты 86 км. Главным отличием Стандартной атмосферы США от Международной стандартной атмосферы является предложенное распределение температур на больших высотах, которое данный в данном калькуляторе не рассматривается.

Определения, константны и формулы, используемые в расчетах

Высота и эшелон полета

Современный высотомер с барабанным цифровым счетчиком, установленный на самолете Fokker 100. В двух окнах показано значение давления в гектопаскалях и дюймах ртутного столба, которое вводится путем вращения ручки кремальеры (слева внизу)

Несмотря на то, что эшелон и высота полета измеряются в одних и тех же единицах длины (метрах, километрах, футах и милях), они являются разными физическими величинами:

  • Высота полета — вертикальное расстояние объекта от среднего уровня моря, измеренное с помощью прибора для измерения длины или расстояния, например, лазерного дальномера или радиовысотомера.
  • Эшелон — условная вертикальная стандартная высота, рассчитанная по давлению, обозначаемая в сотнях футов с добавлением букв FL (англ. Flight Level — эшелон). Например, эшелон 34 000 футов обозначается как FL340. Эшелон измеряется с помощью прибора для измерения давления (например, барометрического высотомера, который фактически является точным барометром, откалиброванным в единицах высоты). При подготовке к взлету высотомер устанавливается на нулевую высоту. Когда самолет поднялся достаточно высоко (на высоту перехода), летчик устанавливает на высотомере стандартное давление 29,921 дюйма ртутного столба или 1013,25 гектопаскалей. При подготовке к посадке самолета, летчик должен на небольшой высоте (в разных юрисдикциях она может быть от 3000 до 18000 футов над уровнем моря установить на высотомере давление в аэропорту назначения, чтобы высотомер показывал при приземлении реальную высоту над уровнем моря.

Механический высотомер с ручкой установки барометрического давления измеряет атмосферное давление на приемнике статического давления, расположенном на обшивке борта самолета. Он откалиброван так, чтобы показывать давление в единицах высоты над уровнем моря. Перед взлетом и посадкой летчик получает от диспетчера величины давления на взлетно-посадочной полосе и устанавливает их в окошке, поворачивая ручку кремальеры.

Читайте также:  При какой температуре плавиться полиэтиленовый пакет

Селектор радиуса Земли R

В селекторе используется четыре константы радиуса Земли:

Средний радиус Земли, определенный Всемирной геодезической системой координат WGS-84: R₁ = 6371,0088 км.

Средний радиус Земли, определенный в Стандартной атмосфере США: R₀ = 6356,766 км.

Экваториальный радиус Земли (большая полуось), определенный Всемирной геодезической системой координат WGS-84: a = 6378,1370 км.

Полярный радиус Земли (малая полуось), определенный Всемирной геодезической системой координат WGS-84: b = 6356,7523142 км.

А — экваториальный, В — полярный и С — средний радиус Земли; С = (2А + В)/3

Удельная газовая постоянная для сухого воздуха Rsp

Удельная газовая постоянная для сухого воздуха Rsp определяется как универсальная газовая постоянная, отнесенная к молярной массе сухого воздуха. В Стандартной атмосфере США 1976 г. и в ГОСТ 4401-81 «Стандартная атмосфера. Параметры» универсальная газовая постоянная определена как R* = 8314,32 Н м кмоль⁻¹ K⁻¹. Следовательно, удельная газовая постоянная для сухого воздуха в Дж K⁻¹ кг⁻¹ рассчитывается как

Стаднартное ускорение свободного падения

Стандартное ускорение свободного падения определяется международным стандартом ISO 80000-3 «Величины и единицы. Часть 3. Пространство и время»: g₀ = 9,80665 м/с² или 32,17405 фут/с². Несмотря на то, что ускорение свободного падения в разных местах Земли различное, для измерений всегда используется указанная выше стандартная величина.

Геопотенциальная высота

Сила тяготения зависит от высоты и широты места. Переход от геометрической высоты к геопотенциальной устраняет переменную — ускорение свободного падения. Геопотенциальная высота — это вертикальная координата относительно среднего уровня моря, вычисленная из геометрической высоты (измеренной с помощью прибора для измерения длины) с учетом изменения ускорения свободного падения в зависимости от высоты и широты. Иными словами, геопотенциальная высота — это высота, учитывающая силу тяжести. При этом изменение силы тяжести от широты места малó и не учитывается. Геопотенциальная высота является мерой удельной потенциальной энергии на данной геометрической высоте относительно поверхности Земли. Она используется в метеорологии и авиации. Соотношение между геометрической H и геопотенциальной высотой Z определяется следующей формулой (формула 18 в 1976 USSA), которая используется в этом калькуляторе

Например, для максимальной геометрической высоты, которую позволяет рассчитать этот калькулятор (Z = 86 км), соответствующая геопотенциальная высота будет H = 84,852 км. В калькуляторе геопотенциальная высота рассчитывается до определения температуры и давления.

Скорость звука

Скорость звука в воздухе около 343 м/с, или 1,235 км/час, или 767 миль в час. Это означает, что звук может проходить в воздухе один километр за 3 секунды или милю за 5 секунд. Скорость звука в воздухе зависит главным образом от его температуры; зависимость от частоты звуковых колебаний и давления воздуха пренебрежимо мала.

Конденсация влаги при околозвуковой скорости

Если предположить, что воздух сухой и что он является идеальным газом при относительно низком давлении и плотности, что имеет место в стандартных условиях на уровне моря, а также предположить, что температура ниже или равна комнатной, то скорость звука определяется по следующей формуле, которая используется в этом калькуляторе:

Здесь γ — рассматриваемый ниже показатель адиабаты, R = 287,052 Дж·кг⁻¹·K⁻¹ — удельная газовая постоянная и T — абсолютная температура воздуха в кельвинах.

Показатель адиабаты газа, называемый также коэффициентом Пуассона и фактором изоэнтропийного расширения, обозначается греческой буквой γ (гамма) и является отношением теплоемкости при постоянном давлении Cp к теплоемкости при постоянном объеме Cv

Для сухого воздуха при 20 °C, γ=1,40.

Зависимость силы тяжести от высоты

Зависимость гравитационного ускорения Gh от высоты h приблизительно определяется следующей формулой, которая используется в этом калькуляторе:

Здесь

g0 — стандартное ускорение свободного падения. Например, ускорение свободного падения на максимальной для этого калькулятора геометрической высоте 86 км равно Gh = 0,9874·g0, то есть разница очень мала.

Зависимость температуры от высоты

В тропосфере температура воздуха уменьшается с увеличением высоты. В Международной стандартной атмосфере, Стандартной атмосфере США 1976 г. и ГОСТ 4401-81 скорость уменьшения температуры (вертикальный температурный градиент) равна 6,5 К/км от уровня моря до 11 км или 36089 футов. В тропопаузе (слое атмосферы от 11 до 20 км или 65617 футов) температура постоянная и равна to –56.5 °C (–69.7 °F или 216.7 K). В ионосфере, от 20 до 32 км или 104987 футов скорость уменьшения температуры (вертикальный градиент) равна 1,0 K/км. Температурные градиенты приведены ниже в таблице до высоты 86 км (геопотенциальной высоты 84,85 км). Таблица приводится по документу USSA 1796.

Таблица 1

Слой атмосферыДиапазон геопотенциальных высот (км)Номер диапазона, bБазовая геопотенциальная высота над средним уровнем моря, Hb (км)Базовое статическое давление, Pb (Па)Базовая температура, Tb (K)Базовый вертикальный температурный градиент на километр геопотенциальной высоты Lb (K/км)
Тропосфера0–11101325288.15–6.5
Тропопауза (стратосфера I)11–2011122632.06216.650.0
Стратосфера II20–322205474.889216.65+1.0
Стратосфера III32–47332868.0187228.65+2.8
Стратопауза (мезосфера I)47–51447110.9063270.65
Мезосфера II51–7155166.93887270.65–2.8
Мезосфера III71–84.96713.956420214.65–2.0
  784.8520.3734186.87

«Базовый» в этой таблице означает величину на нижней границе диапазона высот. Отрицательный градиент означает уменьшение температуры с высотой, а положительный — ее увеличение. Большее значение градиента означает, что при увеличении высоты воздух охлаждается (нагревается) сильнее.

Для определения зависимости температуры от высоты:

  • определите геопотенциальную высоту по геометрической высоте;
  • определите номер интервала, b;
  • определите температуру TM на геопотенциальной высоте H от поверхности до 84,85 км с помощью семи последовательных линейных уравнений в различных интервалах высоты. Для этого вставьте в формулу ниже значения из таблицы 1

Здесь

Hb — базовая геопотенциальная высота (Табл. 1),

Tb — базовая температура,

Lb базовый вертикальный температурный градиент

Температура TM называется молекулярной температурой, определяемой как

Здесь T — кинетическая температура, то есть температура воздуха, которую обычно измеряют термометром. Она является функцией скорости движения молекул газа в земной атмосфере. M0 — молекулярная масса воздуха на уровне моря и MH — молекулярная масса воздуха на высоте H. На высотах до 100 км молекулярная масса воздуха остается постоянной, поэтому молекулярная температура равна кинетической температуре.

Отклонение температуры от стандартного значения. Конечно, реальная атмосфера никогда не соответствует стандартной. Изменения температуры влияют на плотность воздуха и, следовательно, на его давление и вес. В холодном воздухе давление уменьшается с высотой быстрее, чем в горячем. В жаркий день вся атмосфера и график зависимости температуры от высоты будут смещены (см. график ниже), так как отклонение температуры будет прибавлено к кривой температуры и летчики, которые используют барометрические приборы для измерения высоты полета должны помнить, что в жаркий день геометрическая высота их самолета будет больше, чем показанная на высотомере. И, наоборот, в холодный день реальная высота будет меньше, чем показанная на высотомере.

Зависимость температуры, плотности и давления воздуха от геопотенциальной высоты. Синий график — давление, фиолетовый — плотность при отклонении температуры от стандартной +20 °C, оранжевый — плотность при отклонении 0 °C, зеленый — температура, отклонение +20 °C, красный — температура, отклонение 0 °C.

Если самолет входит в зону, где температура значительно ниже, чем стандартная по ISA (+15 °C на уровне моря), высотомер покажет завышенную высоту, что опасно. Чтобы